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Abstract This work reviews quantum-mechanical four-body distorted wave
theories for double electron capture in collisions between fast heavy multiply charged
ions and heliumlike atomic systems. The widely used distorted wave methods of the
first- and second-order in the pertinent perturbation series expansions are compared
with each other. This tests the presumed importance of double continuum intermediate
states of two electrons. Further, the relative performance is evaluated of the second-
order theories with and without the eikonalization of the two-electron Coulomb wave
functions for double continuum intermediate states. This checks the correctness and
usefulness of the eikonalized Coulomb waves when two electrons participate actively
to the transition from the initial to the final state of the entire system. We also analyze
the significance of the contributions from excited heliumlike states especially in com-
parison between theory and measurement. The overall goal of the present study is to
determine how much of the unprecedented experience gained over several decades in
studying high-energy theories of pure three-body charge exchange could be exported
directly to four-body double-electron capture without much of additional and essen-
tial eleaborations, besides the naturally increased computational demand. In particular,
we address the unexpected breakdown of the continuum distorted wave eikonal initial
state approximation and the anticipated success of continuum distorted wave theory
for double charge exchange in ion-atom collisions at high impact energies.
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1 Introduction

We review the existing quantum-mechanical four-body distorted wave theories for
double electron capture in collisions between fast heavy multiply charged ions and he-
liumlike atomic systems [1–7]. The corresponding high-energy theories of pure three-
body charge exchange have repeatedly been reviewed over the last several decades
[8–14]. A strong emphasis has been given in the past to the eikonal initial states (EIS)
[15–17]. These employ the well-known asymptotic phase factor of the single-electron
Coulomb wave function in the entrance channel by which the well-established contin-
uum distorted wave (CDW) method [8,18,19] is simplified to become the CDW-EIS
approximation [15]. Here, the word “asymptote” refers to infinitely large distances
between the electron and the nucleus in the field of which the continuum intermediate
states are considered. The apparent success of this eikonalization cannot be explained
on a sound theoretical basis, since merely empirical testings were used through com-
parisons with experimental data on charge exchange and ionization involving only one
active electron. Normalization of the initial total scattering wave function was initially
invoked as an attempt to theoretically justify the eikonalization [15,20]. However, this
is not supported by consistency of theory, since the CDW-EIS approximation employs
the unnormalized final states. If indeed the normalized scattering states were the main
motivation for eikonalization, then the initial and final Coulomb wave functions for the
continuum intermediate states ought to be treated on the same footing and, hence, both
should be eikonalized. This was not done in purpose to avoid the ensuing degradation
of the CDW-EIS approximation from the second- to the first-order perturbation mod-
eling. Such a theoretically undesirable situation is the present motivation for a further
assessment of the potential for systematics of the empirical success of the CDW-EIS
approximation, but this time within a more stringent test on double charge exchange
which occurs with a much weaker probability than one-electron transfer. An obvious
a priori drawback of the CDW-EIS approximation is the loss of symmetry from the
CDW approximation in treating the incident and target nuclear charge on the same
footing. When one is willing to sacrifice this symmetry, then the possibility opens up
for the introduction of other hybrid first- and second-order approximations with an
alternative eikonalization of Coulomb continuum intermediate states, but this time for
the relative motion of heavy nuclei. From the theoretical viewpoint, it is more justified
to perform the eikonalization of Coulomb wave functions for inter-nuclear than for
electron–nucleus interactions. This is exclusively due to the large reduced mass µ
of two heavy nuclei. It is well-known that the replacement of the full Coulomb wave
function for the inter-nuclear potential by its eikonal logarithmic phase factor gives the
negligible 1/µ2 contribution to the total cross section, even much below the Massey
resonance peak and without the need to resort to any large, asymptotic distance. This
sole theoretical argument suffices to anticipate that the hybrid second-order methods
based upon the eikonalized Coulomb wave functions for the relative motion of heavy
nuclei, such as the boundary-corrected continuum intermediate state (BCIS) [5] and
the Born distorted wave (BDW) [21,22] methods, would exhibit similarly success-
ful performance for single- and double-electron capture (as well as for multi-electron
capture from multi-electron targets). This leads to yet another level of the present com-
prehensive testings by confronting the four-body versions of the CDW-EIS and BCIS
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and BDW approximations for which their three-body variants are known to perform
with a comparable success relative to measurements. Our choice of double capture is
an excellent candidate for this type of testing aimed at determining which of the two
mentioned eikonalizations for electronic or nuclear motions is more successful with
respect to the corresponding experimental data.

Atomic units will be used throughout unless otherwise stated.

2 The CDW-4B method

We consider double electron capture:

ZP + (ZT; 2e)i −→ (ZP, 2e) f + ZT. (2.1)

Here the parentheses symbolize bound states, whereas ZP and ZT are the charges of
the projectile and target nucleus. The transition amplitude for double electron capture
in the CDW-4B method becomes [7]:

T−i f = −N 2
∫∫∫

dx1dx2dri ei ki ·ri+i k f ·r f L(ri , r f )ϕ
∗
f (s1, s2)

× 1 F1(iνT, 1, ivx1 + iv · x1) 1 F1(iνT, 1, ivx2 + iv · x2)

× {
1 F1(iνP, 1, ivs2 + iv · s2)∇x1ϕi (x1, x2) ·∇s1 1 F1(iνP, 1, ivs1 + iv · s1)

+ 1 F1(iνP, 1, ivs1 + iv · s1)∇x2ϕi (x1, x2) ·∇s2 1 F1(iνP, 1, ivs2 + iv · s2)
}

(2.2)

with N = N+(νP)N+(νT), N+(νK) = �(1− iνK)eπνK/2, νK = ZK/v (K = P,T)

L(ri , r f ) = µ−2iνP
i µ

−2iνT
f [N−(ν)]2

× 1 F1(−iν, 1, iki r f +i ki ·r f ) 1 F1(−iν, 1, ik f ri+i k f ·ri ), (2.3)

where N±(ν) = �(1∓ iν)e−πν/2 and ν = ZP ZT/v. A simplification of (2.3) follows
from the eikonal approximation:

[N−(ν)]2 1 F1(−iν, 1, iki r f + i ki · r f ) 1 F1(−iν, 1, ik f ri + i k f · ri )

� (kir f +ki ·r f )
iν(k f ri + k f · ri )

iν�(µiµ f )
iν[(vR−v · R)(vR+v · R)]iν

= (µiµ f )
iν[v2(R2 − Z2)]iν = (µiµ f )

iν(vρ)2iν � (µvρ)2iν

∴ L(ri , r f ) � µ−2i(νP+νT)(µvρ)2iν, (2.4)

where µ = MP MT/(MP + MT). Here, ρ is the projection of vector R to the XOY
plane perpendicular to the Z -axis, i.e. ρ = R − Z with ρ · Z = 0, where vector Z
represents the projection of vector R to the Z -axis. The phase factor (µvρ)2iν, which
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stems directly from the inter-nuclear potential VPT = ZP ZT/R, does not influence
the total cross section, since:

Q−i f

(
a2

0

)
= 1

(2πv)2

∫
dη

∣∣∣T−i f (η )

∣∣∣2 =
∫

dη

∣∣∣∣∣
R−i f (η )

2πv

∣∣∣∣∣
2

, (2.5)

where

R−i f (η ) = −N 2
∫∫∫

dx1dx2dri ei ki ·ri+i k f ·r f ϕ∗f (s1, s2)

× 1 F1(iνT, 1, ivx1 + iv · x1) 1 F1(iνT, 1, ivx2 + iv · x2)

× {
1 F1(iνP, 1, ivs2 + iv·s2)∇x1ϕi (x1, x2)·∇s1 1 F1(iνP, 1, ivs1 + iv·s1)

+ 1 F1(iνP, 1, ivs1 + iv·s1)∇x2ϕi (x1, x2)·∇s2 1 F1(iνP, 1, ivs2 + iv·s2)
}
.

(2.6)

It is now obvious from (2.5) that the total cross section Q−i f is independent of the
inter-nuclear potential ZP ZT/R, as it should be [8]. The expression (2.6) for the basic
matrix element R−i f represents the main working expression for calculating the total
cross sections. Such a CDW-4B method represents a strict generalization of Cheshire’s
CDW-3B method [18] for purely three-body single charge exchange:

ZP + (ZT, e)i −→ (ZP, e) f + ZT. (2.7)

The result (2.6) for R−i f in the CDW-4B method represents the rigorous first-order
term in the four-body Dodd–Greider [23] perturbation series. This is very important,
in view of the absence of any disconnected diagrams in the Dodd–Greider expansion,
a feature which precludes divergence of the series. Only non-divergent perturbation
series have a chance to provide the mathematically meaningful first-order terms that,
in turn, could capture the major physical effects. Such is the CDW-4B method which
can be called the four-body first-order continuum distorted wave (CDW-4B1) method.
A similar remark also applies to the CDW-EIS-4B method which, therefore, can alter-
natively be termed the four-body first-order continuum distorted wave eikonal initial
state (CDW-EIS-4B1) method.

The post form of the transition amplitude in the CDW-4B1 method reads as:

T+i f = −N 2
∫∫∫

ds1ds2dr f ei ki ·ri+i k f ·r f L(ri , r f )ϕi (x1, x2)

× 1 F1(iνP, 1, ivs1 + iv · s1) 1 F1(iνP, 1, ivs2 + iv · s2)

×
{

1 F1(iνT, 1, ivx2 + iv · x2)∇s1ϕ
∗
f (s1, s2) ·∇x1 1 F1(iνT, 1, ivx1 + iv · x1)

+ 1 F1(iνT, 1, ivx1 + iv · x1)∇s2ϕ
∗
f (s1, s2) ·∇x2 1 F1(iνT, 1, ivx2 + iv·x2)

}
.

(2.8)
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The post total cross sections is:

Q+i f

(
a2

0

)
= 1

(2πv)2

∫
dη

∣∣∣T+i f (η )

∣∣∣2 =
∫

dη

∣∣∣∣∣
R+i f (η )

2πv

∣∣∣∣∣
2

, (2.9)

where

R+i f (η ) = −N 2
∫∫∫

ds1ds2dr f ei ki ·ri+i k f ·r f ϕi (x1, x2)

× 1 F1(iνP, 1, ivs1 + iv · s1) 1 F1(iνP, 1, ivs2 + iv · s2)

×
{

1 F1(iνT, 1, ivx2 + iv·x2)∇s1ϕ
∗
f (s1, s2)·∇x1 1 F1(iνT, 1, ivx1+iv·x1)

+1 F1(iνT, 1, ivx1+iv·x1)∇s2ϕ
∗
f (s1, s2)·∇x2 1 F1(iνT, 1, ivx2+iv·x2)

}
.

(2.10)

The transition amplitude as a function of vector ρ can be obtained via:

a±i f (ρ ) =
1

2πv
ρ2iν

∫
dη eiη·ρ R±i f (η ) . (2.11)

Using the Parseval relation, i.e. the convolution theorem for the Fourier integral in the
total cross sections, we have:

Q±i f

(
a2

0

)
=

∫
dρ |a±i f (ρ )|2 . (2.12)

The differential cross section in the CDW-3B and CDW-4B methods can be calcu-
lated directly from the expressions for T±i f [24,25]. Alternatively, we can first carry
out the Fourier integral according to (2.11), and then use the following expression for
the differential cross section [26–28]:

dQ±i f

d�
=

∣∣∣∣∣∣iµv
∞∫

0

dρρ1+2iν Jmi−m f

(
2µvρ sin

θ

2

)
a±i f (ρ )

∣∣∣∣∣∣
2 (

a2
0

sr

)
, (2.13)

where θ is the scattering angle in the center of mass frame of reference. Here, Jν(z)
is the Bessel function of the first order and the νth kind, whereas mi and m f are the
magnetic quantum numbers of the initial and final bound state.

Calculation of the matrix elements for double electron capture into the ground state
(1s2) from any helium-like atom/ion has been carried out by Belkić and Mančev [7].
Their method of calculation provides the total cross section Q±i f through four-dimen-
sional integrals that are subsequently computed by utilizing the scaled Gauss-Legendre
and Gauss-Mehler quadratures [29–31]. It can be verified that in the symmetric reso-
nant case (i = f, ZP = ZT), there is no post–prior discrepancy, i.e. R−i f = R+i f , so

that Q−i f = Q+i f .
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3 The SE-4B method

The CDW-4B method for double charge exchange treats two electrons and two nuclei
in an entirely symmetric manner in the entrance and exit channel. In particular, the
two-electron full Coulomb wave functions are used to describe double continuum
intermediate states that distort the initial and final unperturbed states�i and� f . This
double electronic distortion function is given by the product of two Coulomb wave
functions (the so-called C2 wave function) centered either on the projectile or target
nucleus in the entrance and exit channels. The behavior of each of the two Coulomb
wave functions at large distances is given by the well-known asymptotes in terms of
the logarithmic Coulomb phase factors. In particular, for |vsk+v · sk | � 1 (k = 1, 2),
the leading asymptotic term in the product of the two confluent hyper-geometric func-
tions from the C2 wave function is the twofold Coulomb logarithmic phase factor in
the entrance channel:

[N+(νP)]2 1 F1(iνP, 1, ivs1 + iv · s1) 1 F1(iνP, 1, ivs2 + iv · s2)

≈ (vs1 + v · s1)
−iνP(vs2 + v · s2)

−iνP . (3.1)

Likewise, in the exit channel we have for |vxk + v · xk | � 1 (k = 1, 2)

[N−(νT)]2 1 F1(−iνT, 1,−ivx1 − iv · x1) 1 F1(−iνT, 1,−ivx2 − iv · x2)

≈ (vx1 + v · x1)
iνT(vx2 + v · x2)

iνT . (3.2)

If one makes the additional approximations (3.1) and (3.2) to the exact CDW-4B
method simultaneously in the entrance and exit channels, one obtains the four-body
symmetric eikonal (SE-4B) method for double capture in process (2.1). The initial
scattering state wave function in the SE-4B methods is:

ψ+i = µ−2iνP
i N+(ν)ei ki ·ri

1 F1(−iν, 1, iki r f + i ki · r f )

×(vs1 + v · s1)
−iνP(vs2 + v · s2)

−iνP (3.3)

whereas the final state vector reads:

ψ−f = µ2iνT
f N−(ν)e−i k f ·r f

1 F1(iν, 1,−ik f ri − i k f · ri )

×(vx1 + v · x1)
iνT(vx2 + v · x2)

iνT . (3.4)

Thus, the SE-4B method also treats both electrons on the same footing in the
entrance and exit channels, as does the CDW-4B method, except that the former method
uses the logarithmic phases instead of the original full Coulomb waves from the lat-
ter method. This modification of the electronic C2 wave function from the CDW-4B
method must simultaneously be accompanied by the associated change in the perturba-
tion interactions through the appearance of the two-electron kinetic energy operators
alongside the usual gradient–gradient potential operators. These kinetic energy oper-
ators represent the additional perturbations introduced by eikonalization of the full
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Coulomb wave functions. With these modifications, the prior form of the transition
amplitude in the SE-4B method becomes:

T−i f = −
∫∫∫

dx1dx2dri ei ki ·ri+i k f ·r f L(ri , r f )

×ϕ∗f (s1, s2) (vx1 + v · x1)
−iνT (vx2 + v · x2)

−iνT

×
[

1

2
∇2

s1
+ 1

2
∇2

s2
+∇x1ϕi (x1, x2) ·∇s1 +∇x2ϕi (x1, x2) ·∇s2

]

×ϕi (x1, x2) (vs1 + v · s1)
−iνP (vs2 + v · s2)

−iνP . (3.5)

Similarly, the post version of the T -matrix elements in the same method is:

T+i f = −
∫∫∫

ds1ds2dr f ei ki ·ri+i k f ·r f L(ri , r f )

×ϕi (x1, x2) (vs1 + v · s1)
−iνP (vs2 + v · s2)

−iνP

×
[

1

2
∇2

x1
+ 1

2
∇2

x2
+∇s1ϕ

∗
f (s1, s2) ·∇x1 +∇s2ϕ

∗
f (s1, s2) ·∇x2

]

×ϕ∗f (s1, s2) (vx1 + v · x1)
−iνT (vx2 + v · x2)

−iνT . (3.6)

Here, the function L(ri , r f ) is taken from (2.3). In the consistent mass limit MP,T �
1, the eikonal form (2.4) can be used for L(ri , r f ) omitting the unimportant phases
of unit moduli, e.g. (µv)2iνµ−2i(νP+νT). The remaining phase factor ρ2iν, as the only
contribution from the inter-nuclear potential VPT = ZP ZT/R, is important for dif-
ferential cross sections dQ∓i f /d� computed by the Fourier–Bessel transform of the

ρ-dependent transition amplitudes a∓i f (ρ ) via (2.11). The matrix elements R∓i f (η )

from (2.5) and (2.9) differ from T∓i f in (3.5) and (3.6) only in the absence of the func-

tions L(ri , r f ). The inter-nuclear phase ρ2iν gives a significant contribution primarily
at larger scattering angles. The phase factor ρ2iν disappears altogether from total cross
sections Q∓i f computed from (2.5), (2.9) or (2.12). This is expected, since the inter-
nuclear potential cannot give any contribution to the total cross sections in the mass
limits MP,T � 1 [8].

4 The CDW-EIS-4B method

The CDW-EIS-4B method is a hybrid asymmetrical model which treats the entrance
and exit channels by the SE-4B and CDW-4B methods, respectively. Here, the two-
electron eikonal initial state is employed, so that scattering wave function ψ+i in the
entrance channel is given by (3.3). The scattering wave function ψ−f in the final state
for the exit channel is borrowed from the CDW-4B method. Therefore, the transition
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amplitude in the CDW-EIS-4B method reads as:

T+i f = −[N+(νT)]2
∫∫∫

ds1ds2dr f ei ki ·ri+i k f ·r f L(ri , r f )

×ϕi (x1, x2) (vs1 + v · s1)
−iνP (vs2 + v · s2)

−iνP

×
{

1 F1(iνT, 1, ivx2 + iv · x2)∇s1ϕ
∗
f (s1, s2) ·∇x1 1 F1(iνT, 1, ivx1 + iv · x1)

+ 1 F1(iνT, 1, ivx1 + iv · x1)∇s2ϕ
∗
f (s1, s2) ·∇x2 1 F1(iνT, 1, ivx2+iv·x2)

}
.

(4.1)

5 The CDW-EFS-4B method

The CDW-EFS-4B method is also a hybrid asymmetrical model, but here the entrance
and exit channels are described by the CDW-4B and SE-4B methods, respectively. This
time, the two-electron eikonal final state is used with the scattering wave function ψ−f
in the exit channel given by (3.4). The scattering wave function ψ+i in the initial state
for the entrance channel is taken from the CDW-4B method. Thus, the CDW-EFS-4B
method is the mirror image of the CDW-EIS-4B method. The transition amplitude in
the CDW-EFS-4B method is:

T−i f = −[N+(νP)]2
∫∫∫

dx1dx2dri ei ki ·ri+i k f ·r f L(ri , r f )

×ϕ∗f (s1, s2) (vx1 + v · x1)
−iνT (vx2 + v · x2)

−iνT

× {
1 F1(iνP, 1, ivs2 + iv · s2)∇x1ϕi (x1, x2) ·∇s1 1 F1(iνP, 1, ivs1 + iv · s1)

+ 1 F1(iνP, 1, ivs1 + iv · s1)∇x2ϕi (x1, x2) ·∇s2 1 F1(iνP, 1, ivs2 + iv · s2)
}
.

(5.1)

Regarding differential as well as total cross sections, the same procedure from
the CDW-4B or SE-4B methods also applies to the CDW-EIS-4B and CDW-EFS-
4B methods. This amounts to using the generic expressions (2.11), (2.5), (2.9) and
(2.12). In these latter formulae, the matrix elements R+i f (η ) and R−i f (η ) coincide with

the transition amplitudes T+i f and T−i f from (4.1) and (5.1) provided that the function
L(ri , r f ) from (2.4) due to the inter-nuclear distortion is set to unity, as justified by
MP,T � 1.

We reiterate that the CDW-EIS-4B and CDW-EFS-4B methods are two different
approximate variants to the CDW-4B method. The supplementary approximations
consist of replacing the electronic C2 wave functions from the CDW-4B method by
their asymptotic forms (Coulomb logarithmic phase factors) in one of the two channels
(the entrance or exit channel in the CDW-EIS-4B or CDW-EFS-4B methods, respec-
tively). However, these further approximations introduced by the CDW-EIS-4B and
CDW-EFS-4B methods destroy the original symmetric treatments of two electrons
and two nuclei in the CDW-4B method.
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The above setting of the SE-4B (prior, post), CDW-EIS-4B and CDW-EFS-4B
methods stems simply from making further approximations (of varying severity) to
the already available expressions from the exact CDW-4B method. Such a setting
directly establishes the connections among different methods. The found relationships
facilitate comparisons among these methods, so that potentially notable differences
in the obtained results could be interpreted in terms of the corresponding degrees
of physical mechanisms invoked in different approximations. Alternatively, one can
derive the SE-4B, CDW-EIS-4B and CDW-EFS-4B methods without recourse to the
CDW-4B method by making separate choices of distorting potentials and subsequently
solving the resulting equations for the distorted waves. Such an analysis within the
SE-4B, CDW-EIS-4B and CDW-EFS-4B methods might give the wrong impression
that these approximations are unrelated to the CDW-4B method. However, irrespective
of the way in which the derivation proceeds, one inevitably obtains the same results as
given in the above succinct outlines (with no derivation whatsoever) by appropriately
approximating the CDW-4B method. Hence the needed relationship.

The important question to ask is: why should one make the eikonal approximations
to the electronic distorting functions in the initial or final states if these latter functions
could be treated exactly? Do the supplementary approximations eventually simplify
the computations by a sizeable factor? And, most importantly, is there any significant
physical effect which is lost by these eikonalizations?

For three-body problems, the SE-3B method gives closed analytical expressions
for single charge exchange, relative to the corresponding one-dimensional numerical
quadrature in the CDW-3B method. Nevertheless, the difference in the computational
effort invested to generate the needed tables and data bases for cross sections is negli-
gible, since a single numerical integration is a trivial task by any standard. However,
the SE-3B method irretrievably loses the important Thomas double scattering mech-
anism [32], which on the other hand is described by the CDW-3B method. This is
manifested by the BK1-3B type ∝ v−12−2li−2l f -behavior of Q(SE−3B)

i f in the limit
of high impact velocities v for fixed values of the angular momenta li and lf in the
initial and final bound-state hydrogen-like wave functions. By contrast, the CDW-3B
method and experiments give a completely different second Born type v−11-behavior
for arbitrary values of li and lf . In the case of the SE-4B method for double capture,
no analytical results can be obtained for the transition amplitude, let alone cross sec-
tions. In other words, computational efforts are again comparable in the SE-4B and
CDW-4B methods. As to the billiard-type scattering mechanisms of Thomas [32],
the situation becomes even more aggravated with eikonalization of the full twofold
electronic continua, since double capture is expected to exhibit three Thomas peaks
[21,22] and none of them can be predicted by the SE-4B method.

Since the CDW-EIS-3B or CDW-EFS-3B methods use the eikonal continuum inter-
mediate states in the entrance or exit channel, it is anticipated that these two approx-
imations will preserve the mentioned unphysical features of the SE-3B method. By
the same token, the CDW-EIS-3B or CDW-EFS-3B methods will inherit the good fea-
tures of the CDW-3B method in the relevant parts concerned with the complementary
exit or entrance channels, respectively. This can be seen in the corresponding high-
velocity asymptotic formulae of the total cross sections Q(CDW−EIS−3B)

i f ∝ v−11−2li
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(any l f ) and Q(CDW−EFS−3B)
i f ∝ v−11−2l f (any li ) instead of the correct asymptote

Q(CDW−3B)
i f ∝ v−11 (any li and l f ). Analogous and possibly more severe failures

could occur by passing to four-body problems such as double capture when studied
by means of the CDW-EIS-4B and CDW-EFS-4B methods. This will be analyzed in
the section with illustrations for two-electron transfer in process (2.1).

6 The BDW-4B method

The CDW-4B method takes full account of the double Coulomb wave functions due
to the potentials VPk = −ZP/sk and VTk = −ZT/xk (k = 1, 2) for describing the
continuum intermediate states of the two electrons e1 and e2 at all distances sk and xk

(finite, in the interaction region, and infinitely large, in the asymptotic region) in the
entrance and exit channel, respectively.

On the other hand, in the boundary-corrected first Born (CB1-4B) method, the
motions for the same two electrons are distorted in a much simpler way by including
only the twofold Coulomb logarithmic phases due to the electrons-nuclei potentials
in the initial and final asymptotic regions V∞P = −2ZP/R and V∞T = −2ZT/R,
respectively. The potentials VP1+VP2 and VT1+VT2 tend to V∞P and V∞T , since in the
initial and final asymptotic regions, where sk −→∞ and xk −→∞,we have sk ≈ R
and xk ≈ R (for both k = 1 and k = 2) in the entrance and exit channel, respectively.
As a result, the corresponding continua are included through the electron asymptotic
distortion phase factors exp [−2νP ln (vR − v · R)] and exp [2νT ln (vR + v · R)] due
to V∞P and V∞T , where νK = ZK/v (K = P,T). Such phases remain in the computa-
tion for both differential and total cross sections in the CB1-4B method. Despite the
explicit appearance of the vector R,which happens to be the vector of the inter-nuclear
distance, these electron asymptotic phases have nothing to do with the inter-nuclear
repulsive potential itself, which is VPT = ZP ZT/R. The potential VPT distorts the rel-
ative motion of the two nuclei P and T in both scattering channels, thus leading to the
product of the associated asymptotic initial and final phases, exp [iν ln (vR − v · R)]
and {exp [−ν ln (vR + v · R)]}∗ in the transition amplitude, where ν = ZP ZT/v. The
said product, which is equal to (vρ)2iν, is the only effect caused by the presence of
VPT in the exact eikonal four-body transition amplitude. With such an occurrence, it
is easily shown that the ensuing exact eikonal total cross section is independent of
(vρ)2iν and, hence, of the inter-nuclear potential VPT, as it ought to be on physical
grounds [8]. Of course, this remains true for every particular approximation, provided
that the correct boundary conditions are satisfied.

When in the entrance channel, the electronic and nuclear asymptotic Coulomb phase
factors exp [−2νP ln (vR − v · R)] and exp [iν ln(vR − v · R)] are added together,
the total phase follows via exp [iνi ln (vR − v · R)], where νi = ZP(ZT − 2)/v. This
latter composite phase indicates that, on the level of determining the distortion of the
unperturbed state�i in the entrance channel, the presence of the two electrons is felt,
in effect, merely through a screening of ZT to yield the effective nuclear charge ZT−2.
The deduced R-dependent total distortion phase factor is now recognized as being due
to the asymptotic value V∞f = ZT(ZP − 2)/R of the perturbation V f in the entrance
channel. Similarly in the exit channel, the electron and nuclear asymptotic phase
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factors exp [2νP ln(vR + v · R)] and exp [−iν ln (vR + v · R)] yield the overall dis-
tortion exp [−iν f ln (vR + v · R)], where ν f = ZT(ZP − 2)/v. Here, the combined
phase shows that the sole role for the electron distortion is to screen ZP to ZP − 2.
Hence, such a reasoning on the level of the total R-dependent distortion phase factor
recovers the form of the asymptotic value V∞f = ZT(ZP − 2)/R of the perturbation
V f in the entrance channel.

Double ionization dominates over double charge exchange at high energies. There-
fore, to properly describe electron transfer to a final bound state, in the limit of high
energies, the electronic continuum intermediate states should be included at all dis-
tances, and this is fully accomplished in the CDW-4B method. Conversely, at lower
energies, two-electron transfer dominates over ionization. This time, the electronic
continuum states represent a drawback, since they overweigh the intermediate ioni-
zation paths of the studied reaction. Consequently, the CDW-4B method for double
capture overestimates the corresponding experimental data at lower energies, as is also
the case with single capture within the CDW-3B method [33–53].

The models that partially mitigate the over-account of continuum intermediate
states at lower energies are certain hybrid approximations that combine the CDW-4B
method in one channel with the CB1-4B method in the other channel. An example from
this hybrid category is the BDW-4B method of Belkić [21]. Specifically, the BDW-
4B method exactly coincides with the CDW-4B method in one channel and with the
CB1-4B method in the other channel. As such, the BDW-4B method preserves the
correct boundary conditions in both scattering channels, since both the CDW-4B and
CB1-4B methods do so.

The transition amplitude in the prior form of the BDW-4B method is:

T (BDW)−
i f =−NP

∫∫∫
dx1dx2dri ei ki ·ri+i k f ·r f L1(ri , r f )ϕ

∗
f (s1, s2)

×{
1 F1(iνP, 1, ivs2 + iv·s2)∇x1ϕi (x1, x2)·∇s1 1 F1(iνP, 1, ivs1 + iv·s1)

+ 1 F1(iνP, 1, ivs1 + iv·s1)∇x2ϕi (x1, x2)·∇s2 1 F1(iνP, 1, ivs2+iv·s2)
}

(6.1)

where NP = [N+(νP)]2 and νP = ZP/v. Here, we have:

L1(ri , r f ) = N1

µ
2iνP
i

1 F1(−iν, 1, iki r f + i ki · r f )

×1 F1(−iν f , 1, ik f ri + i k f · ri ) (6.2)

where N1 = N+(ν)N−∗(ν f ). Within the eikonal approximation, the following sim-
plification is possible:

L1(ri , r f ) � µiνi
i µ

iν f
f eiν f ln(vR+v·R ) eiν ln(vR−v·R )

� µ−i(ξP+ξT)(µvρ)2iν e−iξT ln(vR+v·R ), (6.3)
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where

νi = ZP(ZT − 2)

v
, ν f = ZT(ZP − 2)

v
, ξK = 2νK = 2

ZK

v
(K = P,T).

(6.4)

Then, the total cross section can be found from (2.5), with R−i f replaced by R(BDW)−
i f ,

where:

R(BDW)−
i f (η )=−NP

∫∫∫
dx1dx2dR ei ki ·ri+i k f ·r f

×ϕ∗f (s1, s2)(vR + v · R )−iξT

×{
1 F1(iνP, 1,ivs2+iv·s2)∇x1ϕi (x1, x2)·∇s1 1 F1(iνP, 1, ivs1+iv·s1)

+1 F1(iνP, 1,ivs1+iv·s1)∇x2ϕi (x1,x2)·∇s2 1 F1(iνP, 1,ivs2+iv ·s2)
}
.

(6.5)

The corresponding post form of the transition amplitude is:

T (BDW)+
i f =−NT

∫∫∫
ds1ds2dr f ei ki ·ri+i k f ·r f L2(ri , r f )ϕi (x1, x2)

×
{

1 F1(iνT, 1, ivx2+iv·x2)∇s1ϕ
∗
f (s1, s2)·∇x1 1 F1(iνT, 1, ivx1+iv·x1)

+ 1 F1(iνT, 1, ivx1+iv ·x1)∇s2ϕ
∗
f (s1, s2)·∇x2 1 F1(iνT, 1,ivx2+iv ·x2)

}

(6.6)

where

L2(ri , r f ) = N2

µ
2iνT
f

1 F1(−iνi , 1, iki r f + i ki · r f )

×1 F1(−iν, 1, ik f ri + i k f · ri ), (6.7)

with NT = [N−∗(νT)]2, N2 = N+(νi )N−∗(ν) and ν = ZP ZT/v. The function
L2(ri , r f ) can also be expressed in the eikonal approximation via:

L2(ri , r f ) � µiνi
i µ

iν f
f eiνi ln(vR−v·R ) eiν ln(vR+v·R )

� µ−i(ξP+ξT)(µvρ)2iν e−iξP ln(vR−v·R ) . (6.8)

Therefore, the total cross section is given by:

Q(BDW)±
i f

(
a2

0

)
=

∫
dη

∣∣∣∣∣
R(BDW)±

i f (η )

2πv

∣∣∣∣∣
2

, (6.9)
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where

R(BDW)+
i f (η )=−NT

∫∫∫
ds1ds2dR ei ki ·ri+i k f ·r f

×ϕi (x1, x2)(vR − v · R )−iξP

×
{
1 F1(iνT,1,ivx2+iv·x2)∇s1ϕ

∗
f (s1, s2)·∇x1 1 F1(iνT, 1, ivx1+iv·x1)

+ 1 F1(iνT, 1,ivx1+iv ·x1)∇s2ϕ
∗
f (s1,s2)·∇x2 1F1(iνT,1,ivx2+iv·x2)

}
.

(6.10)

Notice that R(BDW)−
i f can be obtained directly from R(BDW)+

f i by making the trans-
formations s1 ←→ s2 and x1 ←→ x2 in both (6.5) and (6.10). This is possible
because the vector R is invariant under this latter transformation. In such a case, these
transformations will map the first of the two terms in R(BDW)±

i f into the second term

and vice versa. In other words, the contributions to R(BDW)±
i f coming from ∇1 · ∇1

and ∇2 · ∇2 are identical to each other. Hence, these expressions can be rewritten as
follows:

R(BDW)−
i f (η ) = −2NP

∫∫∫
dx1dx2dR ei ki ·ri+i k f ·r f

×(vR + v · R )−iξTϕ∗f (s1, s2) FP(x1, x2; s1, s2) (6.11)

and

R(BDW)+
i f (η ) = −2NT

∫∫∫
ds1ds2dR ei ki ·ri+i k f ·r f

×(vR − v · R )−iξPϕi (x1, x2) FT(x1, x2; s1, s2) (6.12)

where

FP(x1, x2; s1, s2) = 1 F1(iνP, 1, ivs2 + iv · s2)

×∇x1ϕi (x1, x2) ·∇s1 1 F1(iνP, 1, ivs1 + iv · s1) (6.13)

FT(x1, x2; s1, s2) = 1 F1(iνT, 1, ivx2 + iv · x2)

×∇s1ϕ
∗
f (s1, s2) ·∇x1 1 F1(iνT, 1, ivx1 + iv · x1). (6.14)

The physical interpretation of the prior form of the T -matrix element in the BDW-
4B method can be done in the following plausible manner. The incident particle scatters
on each of the three constituents of the target (ZT; e1, e2). In the entrance channel,
collision between the projectile ZP and target nucleus ZT results in accumulation of
the Coulombic phase factor exp[(i/v)ZP ZT ln(vR − v · R )]. On the other hand, in
the exit channel, the target nucleus ZT interacts with the newly formed atom or ion
(ZP, 2e) f considered as the point charge (ZP−2), thus accumulating the phase factor
exp[−(i/v)ZT(ZP − 2) ln(vR + v · R )] due to the asymptotic residual Coulombic
interaction W f = ZT(ZP − 2)/R = V∞f . Thus, the nucleus T sees the two electrons
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as playing the role of screening the nuclear charge ZP to its effective value ZP − 2
in the helium-like atomic system (ZP, 2e) f . In contrast, in the entrance channel, the
BDW-4B method allows the projectile to separately distort the nuclear and electronic
motions through the additive three Coulombic interactions. Thus, the interaction of
ZP with the electrons e1 and e2 leads to double ionization of the target (ZT; e1, e2)i .

The ionized electrons propagate in the Coulomb field of ZP in a particular eikonal
direction with the momenta κ1 ≈ κ2 ≈ v. Finally, capture of the two electrons occurs
from these intermediate ionizing states (capture from continuum), because these elec-
trons are traveling along each other, as well as together with the projectile in the same
direction, such that the attractive potential between ZP and ek (k = 1, 2) is sufficient
to bind them together into the new helium-like atomic system (ZP; e1, e2) f . This is
a quantum version of the well-known Thomas [32] classical double scattering. An
analogous situation can also be pictured in the case of the post form R(BDW)+

i f of the

transition amplitude. Explicit calculations of the matrix elements R(BDW)±
i f have been

carried out by Belkić [21]. He has shown that the matrix elements R(BDW)±
i f can be

reduced to four-dimensional real numerical integrations from 0 to 1. The ensuing total
cross sections in the BDW-4B method are obtained by a five-dimensional quadratures.
It should be noted that the integrands in the prior and post forms have the functions
[τk/(1− τk)]iνP,T (k = 1, 2)which originate from the standard integral representation
of the two confluent hyper-geometric functions. These functions possess integrable
branch-points singularities at τ1,2 = 0 and τ1,2 = 1, as well as simple poles at points
τ1,2 = 0. Therefore, the Cauchy regularization of the whole integrand should be
performed before applying the usual Gauss–Legendre quadratures [21].

When computing differential cross sections, a very favorable computational cir-
cumstance occurs using the BDW-4B approximation in the prior form for ZP = 2 or
in the post version for ZT = 2. In such a special case with the H2+ projectile imping-
ing upon any two-electron target (or an arbitrary projectile ZP and helium target),
the Sommerfeld parameter ν f = ZT(ZP − 2)/v or ν f = ZP(ZT − 2)/v) is zero in
(6.2) or in (6.7), so that the Coulomb logarithmic phase factors (vR − v · R)iξT or
(vR+ v · R)iξP is the only R-dependent function (without any phase in terms of ρ) in
T (BDW)−

i f or T (BDW)+
i f . In other words, the distorting function L−(ri , r f ) is reduced

to the following form:

T (BDW)−
i f : L1(ri , r f ) = µ−iξT

i N+(ξT) 1 F1(−iξT, 1, iki r f + i ki · r f )

� (vR − v · R )iξT

ξT = 2νT = 2ZT/v (ZP = 2 , any ZT) (6.15)

and a similar simplification is obtained for L2(ri , r f ) via:

T (BDW)+
i f : L2(ri , r f ) = µ−iξP

f N+(ξP) 1 F1(−iξP, 1, ik f ri + i k f · ri )

� (vR + v · R )iξP ,

ξP = 2νP = 2ZP/v (ZT = 2 , any ZP). (6.16)
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Under these particular circumstances, the computationally difficult and time-
consuming Fourier–Bessel transform (as an integral over ρ-dependent transition
amplitudes), is not needed in the BDW-4B method, since the angular distribution
(d/d�)Q(BDW)− or (d/d�)Q(BDW)+ can be obtained directly via

dQ(BDW)−

d�
=

∣∣∣ µ
2π

T (BDW)−
i f

∣∣∣2
(ZP = 2, any ZT) (6.17)

and

dQ(BDW)+

d�
=

∣∣∣ µ
2π

T (BDW)+
i f

∣∣∣2
(ZT = 2, any ZP) (6.18)

where µ is the reduced mass of P and T given by µ = MP MT/(MP + MT). The
BDW-4B method has first been formulated by Belkić [21] who illustrated this method
for double electron capture in the He2+–He collisions. Subsequently, the BDW-4B
method has been applied by Mančev [54–57] to single electron capture by fast nuclei
from helium-like targets.

7 The BCIS-4B method

Recall that the three-body continuum intermediate state (CIS-3B) approximation has
been introduced by Belkić [58] for process (2.7). The CIS-3B method was aimed
to treat asymmetric collisions, such that its prior and post versions are adapted for
ZT � Z P and Z P � ZT , respectively. This method satisfies the correct boundary
condition only in the channel with the stronger potential [18,58]. In the channel with
the weaker potential, the CIS-3B method uses the unperturbed state which does not
have the proper asymptotic behavior for process (2.7). Such a drawback can be rec-
tified via distortion of the unperturbed state from the entrance channel (which has a
weaker potential) by an additional R-dependent phase due to the electron–nucleus
interaction at infinitely large distances. As a consequence, the correct boundary con-
dition also becomes satisfied in the channel with the weaker potential. This leads to
the three-body boundary-corrected intermediate state (BCIS-3B) method for single
electron capture (2.7) in a general case with arbitrary nuclear charges ZP and ZT.

For a more complicated process, such as double electron capture (2.1), a proper
extension of the BCIS-3B method is needed to treat four-body collisions. This general-
ization is known as the BCIS-4B method which has been formulated and implemented
by Belkić [5]. The BCIS-4B method takes full account of the twofold electronic con-
tinuum intermediate states in one channel (entrance or exit, depending upon whether
the prior or post form of the transition amplitudes is considered). The matrix ele-
ment from the transition amplitudes in the prior and the post versions of the BCIS-4B
method are [5]:
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T (BCIS)−
i f (η )= ZP NT

∫∫∫
ds1ds2dR ei ki ·ri+i k f ·r f L1(ri , r f )

×ϕ∗f (s1, s2 )

(
2

R
− 1

s1
− 1

s2

)
ϕi (x1, x2 )

×1 F1(iνT, 1, ivx1+iv · x1)1 F1(iνT, 1, ivx2+iv · x2) (7.1)

and

T (BCIS)+
i f (η )= ZT NP

∫∫∫
dx1dx2dR ei ki ·ri+i k f ·r f L2(ri , r f )

×ϕ∗f (s1, s2)

(
2

R
− 1

x1
− 1

x2

)
ϕi (x1, x2 )

×1 F1(iνP, 1, ivs1+iv · s1)1 F1(iνP, 1, ivs2+iv · s2) (7.2)

where the functions L1(ri , r f ) and L2(ri , r f ) are the same as those in (6.2) and
(6.7), respectively. The two full Coulomb waves from (6.2) and (6.7) for the relative
motion of heavy particles could, in principle, be kept in the calculations throughout.
This would include the contributions of the order of or smaller than 1/µi and 1/µ f .

Numerically, these latter contributions are negligibly small, since they amount to keep-
ing all the terms that are of the order of or <10−4 relative to 1. Of course, this is totally
unnecessary within a consistent application of the eikonal approximation, in which
the full Coulomb wave functions for the relative motions of heavy particles should
be systematically replaced by their logarithmic Coulomb phase factors as in (6.3) and
(6.8). Under such circumstances, the post and prior total cross section in the BCIS-4B
methods are given by:

Q(BCIS)±
i f

(
a2

0

)
=

∫
dη

∣∣∣∣∣
R(BCIS)±

i f (η )

2πv

∣∣∣∣∣
2

(7.3)

where R(BCIS)+
i f and R(BCIS)−

i f are independent of the inter-nuclear potential:

R(BCIS)−
i f (η )= ZP NT

∫∫∫
ds1ds2dR ei ki ·ri+i k f ·r f

×(vR − v · R )−iξPϕ∗f (s1, s2 )

(
2

R
− 1

s1
− 1

s2

)
ϕi (x1, x2 )

×1 F1(iνT, 1, ivx1+iv · x1)1 F1(iνT, 1, ivx2+iv · x2) (7.4)

R(BCIS)+
i f (η )= ZT NP

∫∫∫
dx1dx2dR ei ki ·ri+i k f ·r f

×(vR + v · R )−iξTϕ∗f (s1, s2)

(
2

R
− 1

x1
− 1

x2

)
ϕi (x1, x2 )

×1 F1(iνP, 1, ivs1+iv · s1)1 F1(iνP, 1, ivs2+iv · s2) . (7.5)
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It should be noted that in R(BCIS)±
i f the electronic continuum intermediate states are

included in the same way as in R(BDW)∓
i f . The essential difference between R(BDW)∓

i f

and R(BCIS)±
i f lies in the perturbation potentials. In R(BCIS)∓

i f (η ), these potentials
are given by scalar operators [ZP(2/R − 1/s1 − 1/s2)] and [ZT(2/R − 1/x1 −
1/x2)], whereas in the case R(BDW)±

i f (η ) we have the sum of the two typical vec-

torial differential (gradient) operator potentials
[∑2

k=1∇sk ln ϕ∗f (s1, s2) ·∇xk

]
and[∑2

k=1∇xk ln ϕi (x1, x2) ·∇sk

]
, which are familiar from the CDW-4B method.

Two alternative methods have been developed by Belkić [5] for calculation of the
matrix elements in the BCIS-4B method. One of these gives the matrix elements
R(BCIS)±

i f (η) in terms of a three-dimensional numerical integration over real variables

from 0 to 1. This method provides the basic quantities R(BCIS)±
i f (η) in the form of the

four-dimensional numerical quadratures over real variables. Both methods have been
found to give the same numerical results [5].

Similarly to the BDW-4B method, it is also possible in the BCIS-4B method to alle-
viate altogether the cumbersome Fourier–Bessel transform, and thus perform direct
computations of differential cross sections (d/d�)Q(BCIS)− or (d/d�)Q(BCIS)+ for a
special case ZT = 2 or ZP = 2, respectively. The only difference is that the particular
case ZT = 2 or ZP = 2 relates to the post (d/d�)Q(BCIS)+ or prior (d/d�)Q(BCIS)−
angular distributions, respectively (the reverse assignment takes place in the BDW-4B
method):

dQ(BCIS)−

d�
=

∣∣∣ µ
2π

T (BCIS)−
i f

∣∣∣2
(ZT = 2, any ZP), (7.6)

dQ(BCIS)+

d�
=

∣∣∣ µ
2π

T (BCIS)+
i f

∣∣∣2
(ZP = 2, any ZT). (7.7)

Double electron capture (2.1) has also been investigated by Purkait [59] and Purkait
et al. [60]. They used the unperturbed wave function �i for the initial scattering state
which, therefore, disregards the correct boundary condition in the entrance channel, in
the case of the general values of ZT and ZP. Specifically, only for ZT = 2 and any ZP,

with no residual Coulomb potential V∞i = ZP(ZT− 2)/R = 0, the unperturbed state
�i from Refs. [59,60] possesses the correct asymptotic behavior, because exclusively
in this particular case we have�+i = �i . In the exit channel the scattering wave func-
tion from Refs. [59,60] is adequate, and it coincides with the corresponding state from
the BCIS-4B method [5]. Had the correct boundary conditions for the entrance channel
also been included by Purkait [59] and Purkait et al. [60] from the outset in the general
case of arbitrary values of ZP and ZT for process (2.1), these authors would have
rediscovered the BCIS-4B method of Belkić [5] according to (7.1) and (7.2). Explicit
computations from Refs. [59,60] were concerned with double charge exchange in the
He2+–He,Li3+–He and B5+–He collisions. In this particular case with a helium target
(ZT = 2), the Sommerfeld parameter ν f = ZP(ZT− 2) becomes zero which leads to
N−∗(ν f )1 F1(−iν f , 1, ik f ri+i k f ·ri ) = 1 in L1(ri , r f ) from (6.2). Fortuitously, this
implies that�+i = �i in which case the matrix elements from Refs. [59,60] coincides
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with (7.1) from the BCIS-4B method. In the computations from Refs. [59,60] the
remaining full Coulomb wave function χCoul ≡ N+(ν)1 F1(−iν, 1, iki r f + i ki · r f )

with ν = ZP ZP/v for the relative motion of heavy particles was used instead of its
consistent eikonal expressions χeik ≡ µiν

i exp [iν ln(vR − v · R)]. Nevertheless, as
already stated, the difference between the corresponding results for the total cross
sections obtained using the said full Coulomb wave and its eikonal limit, i.e. χCoul and
χeik within the BCIS-4B method for double electron capture in e.g. the ZP–He colli-
sions should be in the 3rd or 4th decimal places. The two such explicit sets of the total
cross sections in the BCIS-4B method for the He2+–He collisions based upon χeik
and χCoul in the entrance channel have been published by Belkić [5] and Purkait [59],
respectively. The results from these two studies should be indistinguishable from each
other within the accuracy 10−3–10−4. However, this is not the case, pointing to the
existence of some computational errors in the work of Purkait [59], given the veracity
of the results of Belkić [5] from the BCIS-4B method, which has been thoroughly
checked to yield the identical cross sections using two completely different methods
for all the matrix elements.

8 The CB1-4B method

Numerous investigations and comparisons with experiments have confirmed that the
CB1-3B method is an accurate theory for rearrangement collisions at intermediate and
high impact energies [61–68]. Therefore, it is reasonable to extend this approximation
to four-body collisions with one or two active electrons. Such an extension for dou-
ble capture has been done by Belkić [69,70] through the introduction of the CB1-4B
method. The transition amplitudes in the CB1-4B method for double charge exchange

within the prior
(

T−i f

)
and the post

(
T+i f

)
forms can be taken from Ref. [70] without

the term (vρ)2i ZP ZT/v:

T±i f (η ) =
∫

dRe∓2iqP,T·R(vR + v · R)−iξF±(R ), (8.1)

F−(R ) = ZP

∫ ∫
ds1ds2ϕ

∗
f (s1, s2)e

−iv·(s1+s2)

×
(

2

R
− 1

s1
− 1

s2

)
ϕi (x1, x2), (8.2)

F+(R ) = ZT

∫ ∫
dx1dx2ϕ

∗
f (s1, s2)e

−iv·(x1+x2)

×
(

2

R
− 1

x1
− 1

x2

)
ϕi (x1, x2), (8.3)

where ξ = 2(ZT − ZP)/v. These expressions are based upon (6.4) as well as:

ki · ri + k f · r f = qP · (s1 + s2)+ qT · (x1 + x2)

= −2qP · R − v · (x1 + x2) = 2qT · R − v · (s1 + s2), (8.4)
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2qP = +η − v+v̂, 2qT = −η − v−v̂, qP + qT = −v, (8.5)

v+ = v + E f − Ei

v
, v− = v − E f − Ei

v
. (8.6)

The vector of the incident velocity v is chosen along the Z -axis, i.e. v̂ = (0, 0, 1),
whereas the vector η is the transverse momentum transfer in the XOY plane:

η = (η cosφη, η sin φη, 0), η · v = 0. (8.7)

A complete analytical calculation of the matrix elements T±i f (η ), as a two-dimen-
sional integral, has been carried out by Belkić [70]. The method used is general in
the sense that it can be applied to hetero-nuclear (asymmetric) [70], as well as homo-
nuclear (symmetric) [69] collisions in which double charge exchange occurs. This has
been substantiated for the symmetric He2+–He collision, for which the algorithm of
Belkić [70] reproduced exactly the results from the corresponding previous study [69].
This cross-validation is important, since Belkić [69] presented a completely different
way of calculating the matrix elements. It should be mentioned that the partial wave
analysis of the transition amplitude in the CB1-4B method has also been performed
for double electron capture in collisions of alpha particles and helium [71]. If the nec-
essary convergence over the partial waves has been achieved, the numerical results of
Gulyás and Szabo [71] would be the same as those obtained without the partial wave
analysis. However, this is not the case (as will be shown later in Fig. 4), possibly due
to the inclusion of merely three partial waves and/or because of some computational
errors made by Gulyás and Szabo [71].

9 Comparison between theories and experiments

9.1 Double electron capture into the ground state

We first analyze the total cross sections in the CDW-4B method for double electron
capture from He by fast H+ and He2+ ions:

H+ + He(1s2) −→ H−(1s2)+ He2+, (9.1)

He2+ + He(1s2) −→ He(1s2)+ He2+. (9.2)

In order to investigate the sensitivity of the prior and post forms of the total cross
sections to the choice of the ground-state wave functions for He and H−, we employ
four two-electron functions: a one-parameter uncorrelated functions of Hylleraas [72],
a radially correlated two-parameter orbital of Silverman et al. [73], a three-parameter
function of Green et al. [74], and a four-parameter function of Löwdin [75]. As shown
by Belkić and Mančev [7], the post–prior discrepancy for reaction (9.1) for all four
wave functions is within at most 40% at impact energies where the CDW-4B method
is expected to be most adequate (E ≥ 100 keV). In the case of the wave function of
Löwdin [75], the difference between the prior and post cross section does not exceed
20% at E ≥ 100 keV.
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Fig. 1 Total cross sections Q as a function of the incident energy E for process (9.1). Theory: full curve
(CDW-4B method [7]), doubly-chained curve (CB1-4B method: present results) and dashed curve (AO
method [77]). Experiment: filled square [80], open square [81], open triangle [82,83] and open circle [84]

Total cross sections in their post forms for process (9.1) are given in Figs. 1 and 2
using the wave functions of Hylleraas [72] for the initial and final helium-like states.
It has been verified in the CDW-4B method [76] that the high-energy cross sections
computed using the orbitals of Silverman et al. [73], Green et al. [74] and Löwdin
[75] are very close to those associated with the wave function of Hylleraas [72]. The
cross sections of the CDW-4B method are seen in Fig. 1 to be in excellent agreement
with the available experimental data at impact energies E ≥ 100 keV. However, the
present results of the CB1-4B method also given in Fig. 1, markedly overestimate the
experimental data. The cross sections from the three-state two-center close coupling
atomic orbital (AO) method used by Lin [77] considerably underestimate the mea-
sured data at lower energies (E ≤ 45 keV), with precisely the reversed pattern above
120 keV.

In Fig. 2 the present cross sections obtained using the CB1-4B and the four-body
first-order Jackson–Schiff (JS1-4B) methods are compared with each other for process
(9.1). As can be seen from this figure, noticeable differences exist between these two
methods below 200 keV pointing to the importance of the correct boundary conditions
that are preserved in the CB1-4B method and ignored in the JS1-4B method. Also
shown in Fig. 2 are the earlier results of Gerasimenko [78,79]. He aimed at using the
JS1-4B method, but his results are wrong and, as such, denoted by JS1#-4B to avoid
confusion with the corresponding exact results from the JS1-4B method.

We can conclude that, in the case of reaction (9.1) at impact energies E ≥ 100 keV,
the CDW-4B method is not strongly dependent upon the choice of the bound-state
wave functions from Refs. [72–75]. Hence, the simplest one-parameter orbital of Hy-
lleraas [72] can confidently be used in subsequent applications regarding process (9.1).
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Fig. 2 Total cross sections Q as a function of the incident energy E for process (9.1). Theory: full curve
(CB1-4B: present results), dashed curve (JS1-4B method: present results) and open circles (JS1#-4B method
[78,79])

At energies E ≥ 100 keV, where the CDW-4B method is assessed to be adequate,
the prior and post cross sections are in satisfactory mutual agreement and, further-
more, they provide an excellent interpretation of the existing experimental data on the
H+–He double charge exchange.

The cross sections for process (9.2) in the CDW-4B method have first been reported
in Refs. [21,22]. There is no post–prior discrepancy for this reaction, so that Q−i f =
Q+i f ≡ Qi f . It has been found by Belkić et al. [22] that the dependence of the total

cross sections for the He2+–He collisions upon the bound-state wave functions is not
strong and, therefore, similar to that in the H+–He collisions. The first-order theories
for process (9.2) are illustrated in Figs. 3, 4, 5, 6, 7, 8, 9 using the CB1-4B, BDW-
4B, BCIS-4B, CDW-4B1 and CDW-EIS-4B1 methods. Figure 10 presents certain
additional results with approximate second-order contributions from a distorted wave
perturbation expansion [6] which is not the series of Dodd and Greider [23]. Surpris-
ingly, as seen in Fig. 3, the results from the CDW-4B1 method [21,22] for process
(9.2) do not reproduce most of the experimental data, except those at the two largest
energies 4 and 6 MeV.

In the same Fig. 3 for process (9.2) we also give the cross sections from the CB1-4B
method [69,70]. Below 1.5 MeV, the CDW-4B method agrees well with the experi-
mental data, but gives too large cross sections above 1.5 MeV. Fortuitously, and only
for the particular process (9.2), where ZP = 2 = ZT, the CB1-4B and JS1-4B method
coincide with each other. However, since in this special case, both the initial and final
Coulomb phases for the relative motions of the nuclei disappear altogether, the channel
wave functions in the BK1-4B method also possess the proper asymptotic behaviors.
Nevertheless, the BK1-4B method still disobeys the correct boundary conditions, even
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Fig. 3 Total cross sections Q as a function of the incident energy E for process (9.2). Theory: full curve
(CDW-4B method [21]) and doubly-chained curve (CB1-4B method [69,70]). Experiment: open square
[85], open circle [86,87], open down triangle [88], open up triangle [89], open square [90] and filled circle
[91]

Fig. 4 Total cross sections Q as a function of the incident energy E for process (9.2). Theory: full curve
(CB1-4B method: present results), dashed curve (CB1#-4B method [71]), dotted curve (BK1-4B: present
results) and open circles (JS1-4B method [92,93])
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Fig. 5 Total cross sections Q as a function of the incident energy E for process (9.2). Theory: dashed curve
(CB1-4B method without perturbation Oi [69,70]) and full curve (CB1-4B method with perturbation Oi
[70]). Experiment: filled square [85], open circle [86,87], open down triangle [88], open up triangle [89],
open square [90] and filled circle [91]

Fig. 6 Total cross sections Q as a function of the incident energy E for process (9.2). Theory: dou-
bly-chained curve (CB1-4B method [69,70]), dashed curve (BCIS-4B method [5]), full curve (BDW-4B
method [21]) and singly-chained curve (CDW-4B method [21]). Experiment: open circle [86,87], open
down triangle [88], open up triangle [89] and filled circle [91]
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Fig. 7 Total cross sections Q as a function of the incident energy E for process (9.2). Theory: doubly-
chained curve (CB1-4B method [69,70]), dashed curve (BCIS-4B method [5]), full curve (BDW-4B method
[21]) and singly-chained curve (CDW-4B method [21]). Experiment: filled square [85], open down triangle
[88], open up triangle [89], open square [90] and filled circles [91]

Fig. 8 Total cross sections Q as a function of the incident energy E for process (9.2). Theory: dashed
curve (BCIS-4B method [5]), full curve (BDW-4B method [21]) and dotted curve (CDW-EIS-4B method
[6]). Experiment: open circle [86,87], open down triangle [88], open up triangle [89] and filled circle [91]
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Fig. 9 Total cross sections Q as a function of the incident energy E for process (9.2). Theory: dashed
curve (BCIS-4B method [5]), full curve (BDW-4B method [21]) and dotted curve (CDW-EIS-4B method
[6]). Experiment: filled square [85], open down triangle [88], open up triangle [89], open square [90] and
filled circles [91]

Fig. 10 Total cross sections Q as a function of the incident energy E for process (9.2). Theory: full curve
(CDW-4B1 method [6,21]) dashed curve (CDW-4B2 method [6]), dotted curve (CDW-EIS-4B1 method
[6]) and singly-chained curve (CDW-EIS-4B2 method [6]). Experiment: filled square [85], open down
triangle [88], open up triangle [89], open square [90] and filled circles [91]
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in the case of process (9.2), due to the appearance of the inadequate perturbation poten-
tials. For example, in the exit channel the perturbation potential within the BK1-4B
method has only the long-range interactions ZT(−1/x1−1/x2) instead of the physical
short-range potential ZT(2/R − 1/x1 − 1/x2), which is required by the asymptotic
convergence problem [8]. Therefore, the importance of the correct boundary condi-
tions can also be inferred by comparing the CB1-4B and BK1-4B methods. Moreover,
such a comparison would reveal the relative importance of the contributions from the
terms ZT(−1/x1 − 1/x2) and 2ZT/R. This is illustrated in Fig. 4, where the cross
sections of the BK1-4B method are seen to markedly overestimate the correspond-
ing results from the CB1-4B method. Also shown in Fig. 4 are the results of Gulyás
and Szabo [71] who used the partial wave analysis within the CB1-4B method. Their
results markedly underestimate the true cross sections of the CB1-4B method [69,70],
and this discrepancy increases when the energy is augmented, indicating that the three
partial waves used in Ref. [71] are totally insufficient for achieving convergence. It
is well-known that the number of partial waves needed for convergence increases
significantly with increased impact energy, and this is at variance with keeping only
three partial waves throughout, as done by Gulyás and Szabo [71]. The erroneous
data given by Gulyás and Szabo [71] are denoted by CB1#-4B in Fig. 4 in order to
avoid confusion with the corresponding exact cross sections from the CB1-4B method
obtained by Belkić [69,70]. Note that the earlier findings from the CB1-4B method
reported by Gerasimenko and Rosentsveig [92,93] are seen in Fig. 4 to be in perfect
agreement with the corresponding results of Belkić [69,70].

In Fig. 5 comparison is made between the results from the CB1-4B method [69]
with and without the perturbation Oi for process (9.2). This additional term in the
perturbation potential is defined by:

(Ei − hi )ϕi ≡ Oi (9.3)

where hi is the target electronic Hamiltonian. Obviously, the term Oi is equal to zero
only for the exact eigen-solutions ϕi (x1, x2) ≡ ϕi and Ei of hi . However, since these
latter solutions are unavailable, the term Oi should, in principle, be kept as suggested
by Belkić [69] within the CB1-4B method. It is seen in Fig. 5 that the contribution of
the perturbation Oi is very small and, as such, can be neglected throughout.

One of the inadequacies of the CDW-4B1 method is the use of unnormalized total
scattering wave functions in both the entrance and exit channels. Of course, the same
drawback of the CDW-3B method is also encountered for single charge exchange
(2.7) [20], but without a significant consequence at impact energies satisfying the
usual validity condition [8]:

Incident energy E(keV/amu) ≥ 80 max{|Ei |, |E f |}, (9.4)

where Ei and E f are the initial and the final orbital energies of the captured electron,
respectively.1 The discrepancy between the CDW-4B1 method and experiments for

1 According to (9.4), the expected limit of the validity of the CDW-4B1 method for a He2+ projectile is
0.45 MeV, whereas for a Li3+ ion impact it is above 2 MeV, and for a B5+ projectile it is above 9.7 MeV.
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reaction (9.2) may indicate that the same type of inadequacies invoked in theories
of rearrangement collisions could be more serious for double than for single charge
exchange. Total cross sections for high-energy two-electron transfer are smaller than
the corresponding results for one electron capture by at least two orders of magni-
tude. Therefore, it is not surprising that double charge exchange, as a much weaker
effect than single electron transfer, appears to be very sensitive to any (even appar-
ently small) inadequacies of the theory. Nevertheless, this normalization problem is
not expected to be the main cause for the lack of agreement between the CDW-4B1
method and experiment below 4 MeV in Fig. 6. This could be inferred from the work
of Martínez et al. [6]. Their results from the CDW-EIS-4B1 method (which uses the
normalized eikonal scattering wave function in the entrance channel) underestimate
both the experiments and the CDW-4B1 method for the same process (9.2), as seen in
Figs. 8, 9, 10.

As was initially conjectured by Belkić et al. [22], an alternative reason for the
fact that the CDW-4B1 method is satisfactory only at the highest energies (4 and 6
MeV) in Fig. 3 could be neglect of the second-order contribution from a perturba-
tion series. Subsequently, Martínez et al. [6] used the sum of the T -matrix element
from the CDW-4B1 method and an approximate on-shell second-order term from a
perturbation expansion. They called the sum of these two latter T -matrix elements
the four-body second-order continuum distorted wave (CDW-4B2) approximation.
The usual eikonalization of the two full electronic continua in the entrance channel
introduces a further approximation to the CDW-4B2 method known as the four-body
second-order continuum distorted wave eikonal initial state (CDW-EIS-4B2) method
[6]. Recall that the CDW-4B1 and CDW-EIS-4B1 methods are the first-orders to the
perturbation series expansion of Dodd–Greider [23] without disconnected diagrams.
Likewise, the proper CDW-4B2 and CDW-EIS-4B2 methods, as the second-orders
to the same perturbation development of Dodd–Greider [23], would be obtained by
including the second terms in this series. This is not what has been done by Martínez et
al. [6]. Instead, they added a second-order propagator from an ordinary distorted wave
expansion (with disconnected diagrams) to the transition T -operator of the CDW-4B1
method. Such a mixing of two terms from two different series with connected and
disconnected diagrams is obviously inconsistent. As a consequence, acronyms CDW-
4B2 and CDW-EIS-4B2 used by Martínez et al. [6] are misleading, since they do not
refer to the second-orders of the Dodd–Greider series [23], as opposed to what one
would be inclined to think by extrapolating the terminology with the CDW-4B1 and
CDW-EIS-4B1 methods to the next (second) order in the expansion. For this reason
in the conclusion to the two recent state-of-the-art reviews [2,3], the second-order
model of Martínez et al. [6] was called the ‘augmented continuum distorted wave
method’ and the ‘augmented continuum distorted wave eikonal initial state method’.
Likewise, hereafter we shall interchangeably use the abbreviations CDW-4B2 and
‘augmented CDW-4B’ (as well as CDW-EIS-4B2 and ‘augmented CDW-EIS-4B’).
However, the reader should always bear in mind the mentioned remark about the gen-
uine second-order Dodd–Greider methods [23], especially in interpreting the results
of comparisons between the CDW-4B1 and CDW-4B2 methods on the one hand, as
well as between the CDW-EIS-4B1 and CDW-EIS-4B2 methods on the other hand.
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The CDW-4B2 method yields the cross sections that agree favorably with most
of the available experimental data in Fig. 10, except at 4 and 6 MeV (precisely the
reverse pattern relative to the CDW-4B1 method). However, as seen in Fig. 10, the
CDW-EIS-4B2 method gives the results that overestimate both the cross sections
from the CDW-4B2 method and the experimental data for process (9.2). Regarding the
CDW-EIS-4B1 method, Figs. 8 and 9 show that throughout the interval 100–3000 keV,
Q(CDW−EIS−4B1)

i f markedly underestimates the experimental data. For example, this
underestimation is by 2–3 orders of magnitude in the range 100–2000 keV. This lat-
ter energy range is well within the expected validity domain of the CDW-EIS-4B1
method. On the other hand, in Fig. 10, the cross sections Q(CDW−EIS−4B2)

i f over-
estimate considerably all the available experimental data in the whole range under
consideration. In particular, at impact energies 100–1000 keV, the values of the ratio
Q(CDW−EIS−4B2)

i f /Q(CDW−EIS−4B1)
i f obtained by Martínez et al. [6] are enormous, rang-

ing from 103 to 104.

The same on-shell Green propagator for a second-order contribution has also been
used within the impulse approximation (IA) by Gravielle and Miraglia [94] for pro-
cess (9.2). They omitted the first-order IA, but this is unjustified as they have not
shown that this ignored term is indeed negligible. Moreover, such an omission is not
supported by the CDW-4B2 method, which contains a significant contribution from
the corresponding first-order term provided by the CDW-4B1 method, as seen via the
full and dashed curves in Fig. 10. It is pertinent to recall that the IA for three- and
four-body collisions does not obey the correct boundary conditions. This most serious
drawback has been rectified by Belkić with the emergence of the three- and four-body
Reformulated Impulse Approximation (RIA-3B, RIA-4B) [95–98].

Overall, as opposed to single electron capture, it is physically plausible that the
second-order term in a perturbation expansion could play an important role for double
electron capture, since in this latter process two electrons participate actively in the
collision. This is evidenced by large differences between the CDW-4B1 and CDW-
4B2 methods, on the one hand, and between the CDW-EIS-4B1 and CDW-EIS-4B2
methods, on the other hand.

These initial assessments of the second-order terms in a perturbation series are
encouraging. Nevertheless, it would be very important to extend such computations
by including both the on- and off-shell second-order contributions in the CDW-4B2
and CDW-EIS-4B2 methods for process (9.2). Furthermore, it would be indispens-
able to assess the convergence rate in the spectral representation of the Green function
from a second-order propagator. This latter spectral representation from Martínez et
al. [6] is inconclusive, as it takes into account only the two hydrogen-like ground states
centered on the projectile and target nucleus, without the necessary assessment of the
contribution from any of the other, ignored intermediate states.

Further, as can be seen from Figs. 6, 7, 8, 9, the BCIS-4B and BDW-4B methods
yield very similar values for the displayed total cross sections. These two approx-
imations use normalized scattering wave functions in one channel. The total cross
sections from the BCIS-4B and BDW-4B methods are much smaller that those from
the CB1-4B method throughout the energy range under consideration. For example,
the difference between the findings of the BDW-4B and CB1-4B methods increases
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Fig. 11 Total cross sections Q as a function of the incident energy E for process (9.5). Theory: dashed
curve (prior CB1-4B method [70]), full curve (post CB1-4B method [70]) and dotted curve (CDW-EIS-4B
method [100]). Experiment: open circle [99]

as the impact energy is augmented, reaching two orders of magnitude at 6 MeV.
Importantly, the BDW-4B and BCIS-4B methods are in good agreement with most of
the available experimental data even without any second-order term from a distorted
wave series.2 However, at the two largest energies (4 and 6 MeV), the BDW-4B and
BCIS-4B methods are seen in Fig. 7 to overestimate the measurements.

Next, we analyze the results of Belkić [70] obtained by means of the CB1-4B
method for the following asymmetric reaction:

7Li3+ + 4He(1s2) −→ 7Li+(1s2)+ 4He2+. (9.5)

The results for the total cross sections in both the post and prior versions for process
(9.5) are depicted in Fig. 11. As can be seen from this figure, the post cross sections are
slightly larger than the prior ones. The post–prior discrepancy appears to be somewhat
more pronounced at lower than at higher energies. A comparison between the CB1-4B
method and the experimental data of Shah and Gilbody [99] is also shown in Fig. 11.
The results from the CB1-4B method are seen to be in satisfactory agreement with the
experimental data. Thus, considering only the 1s2 −→ 1s2 transition in process (9.5),
it follows that the CB1-4B method compares more favorably with the measurement
than the corresponding CDW-4B method, as evidenced by Figs. 6 and 11.

2 Incidently, this casts doubt on the CDW-EIS-4B1 method which has been claimed [6] to be inadequate
for double charge exchange because of neglect of the second-order propagator in the expansion of the total
Green operator for the whole system.
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The total cross sections reported by Purkait et al. [60] for process (9.5) are close
to the results from the CB1-4B method and the experimental data from Fig. 11.
Nevertheless, this needs to be reassessed by taking into account the final excited
states of the Li+ ion in process (9.5), since they have been neglected by both Belkić
[5] and Purkait et al. [60].

Gayet et al. [100] have also studied process (9.5). They used the CDW-EIS-4B
method at impact energies 700–5000 keV (recall that CDW-EIS-4B≡CDW-EIS-
4B1). Their total cross sections grossly underestimate the experimental data from Fig.
11 by two orders of magnitude. This fact and a similar observation, which we have
already made for process (9.2), indicate that the CDW-EIS-4B method is inadequate
for double electron capture in heavy particle collisions.

It is also instructive to consider the IPM for reaction (9.2). According to the IPM,
the transition amplitude for double electron capture is given as a product of the ampli-
tudes for single electron capture [101–104]. The differential cross section for double
electron capture in the IPM version of the CDW method (denoted by CDW-IPM) is
the Fourier–Bessel transform:

dQ(CDW−IPM)
i f

d�
=

∣∣∣∣∣∣ivµ
∞∫

0

dρ ρ1+2iν
[
a(CDW−3B)

i f (ρ)
]2

J0(ηρ)

∣∣∣∣∣∣
2(

a2
0

sr

)
. (9.6)

Here, a(CDW−3B)
i f (ρ) is the transition amplitude as a function of ρ in the CDW-3B

method [8,18] for single electron capture (2.7). The expression for a(CDW−3B)
i f (ρ) in

the prior form is given by Belkić and Salin [27] as:

a(CDW−3B)
i f (ρ) = 32i

v
(ZP ZT)

5/2 N+(νP)N
+(νT) [(1− iνT)I0 + iνT I1] ,

where N+(νK) = �(1− iνK) exp (πνK/2) , νK = ZK/v (K = P,T) and

I0 =
∞∫

0

dκ κ J0(κρ)
A

C2

(
1− ω1

κ2 + γ 2

)−1−iνP
(

1− ω2

κ2 + δ2

)−iνT

,

I1 =
∞∫

0

dκ κ J0(κρ)
A + i B

C2

(
1− ω1

κ2 + γ 2

)−1−iνP
(

1− ω2

κ2 + δ2

)−1−iνT

,

A = κ2 + δ2 − (ZP + iv)(ZP − iα), B = v(ZP − iα),

γ = α2 + Z2
P, α = v

2
− Ei − E f

v
, ω1 = 2v(α + i ZP),

δ = β2 + Z2
T, β = v

2
+ Ei − E f

v
, ω2 = 2v(β + i ZT),

C = (κ2 + γ 2)(κ2 + δ2), γ = δ.
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The total cross sections Q(CDW−IPM)
i f are computed from (9.6) by standard integra-

tion over ρ in the interval [0,∞]. The ensuing results have been reported by Belkić
et al. [22]. These latter results are in satisfactory agreement with measurements in
the energy range 0.9–7 MeV (not shown in Fig. 10 to avoid clutter, but similar results
from CDW-IPM will be displayed in Fig. 12). Additional computations have been
performed in the CDW-IPM using the Hylleraas wave function [72] for the final
bound state ϕ f , and the RHF orbital [105–107] for ϕi , which is expressed in an
analytical form as given by Clementi and Roetti [108]. These latter results, denoted
by Q(CDW−IPM)(ii)

i f have been compared by Belkić et al. [22] with the cross sections

Q(CDW−IPM)(i)
i f computed by means of the orbital of Hylleraas [72] for both the initial

and final bound states. In Ref. [22] it was found that at lower and intermediate energies
100–1000 keV the results for Q(CDW−IPM)(ii)

i f are smaller than those for Q(CDW−IPM)(i)
i f

by a factor γ ′ ≡ Q(CDW−IPM)(ii)
i f

/
Q(CDW−IPM)(i)

i f with the numerical values confined
to the interval γ ′ ∈ [0.90, 0.52]. Such a pattern is precisely reversed at higher ener-
gies from 1 to 7 MeV at which γ ′ ∈ [0.90, 1.65]. The difference between the results
Q(CDW−IPM)(i)

i f and Q(CDW−IPM)(ii)
i f is a well-known consequence of electronic corre-

lations. Radial correlations are abundantly present in the RHF orbital [108], whereas
they are ignored in the Hylleraas wave function.3 The IPM and the related indepen-
dent event model (IEM) [109] completely ignore the dynamic correlation effects that
make double charge exchange fundamentally different from single electron transfer.
Nevertheless, both the IPM and IEM can be amended by incorporating static correla-
tions. This has been shown by Crothers and McCarroll [109] who used the IEM within
the CDW method (as denoted by CDW-IEM) to study double electron capture in the
He2+–He(1s2) collisions. They included the static electron correlation effects in the
target through the wave function of Pluvinage [110,111] with the explicit appearance
of the inter-electronic coordinate r12. Deco and Grün [104] used the CDW-IPM with
target static correlation effects included by means of the configuration interaction (CI)
wave functions (also called linear superposition of configurations).

9.2 Double electron capture into excited states

The prediction of the contributions from excited states requires a convenient descrip-
tion of singly and doubly excited states of a helium-like atomic system. One possibility
is to describe the final state ϕ f (s1, s2 ) by means of the CI wave function. For these
CI functions, the procedure to calculate the bound-free form factors as the matrix
elements in the CDW-4B method has previously been devised by Belkić and Mančev
[7] in a general manner, which is applicable to both the ground and excited states of
helium-like atoms or ions. This can be done by employing a basis set of mono-elec-
tronic functions such as Slater type orbitals (STO) or hydrogen-like orbitals with a
nuclear charge ZP [112,113]. Such functions are particularly convenient for describing
singly or doubly excited states. When the final state is auto-ionizing, only the bound

3 In the Hylleraas wave function of helium-like atoms, merely the Slater screening is taken into account
by which the nuclear charge ZT is replaced with ZT − 5/16 = ZT − 0.3125.
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Fig. 12 Total cross sections Q as a function of the incident energy E for process He2+ + He(1s2) →
He(�)+ He2+. Theory: singly-chained curve (CDW-IPM method [121] including the sum of the ground
and all excited final states), dashed curve (CDW-4B method [113] including the final ground state alone),
and full curve (CDW-4B method [113] including the sum of the ground and all excited final states). Experi-
ment: filled square [85], open down triangle [88], open up triangle [89], open square [90] and filled circles
[91]

components of ϕ f (s1, s2 ) are kept throughout, since its decay occurs much after the
collision has been completed. The use of these CI wave functions [112] within the
said procedure of Belkić and Mančev [7] regarding bound-free form factors facilitates
the calculation of the matrix elements in the transition amplitude for double electron
capture into excited states [113]. These latter calculations were restricted to the singly
excited states (1snl) with n ≤ 3 and l ≤ n − 1 and doubly excited states (2l2l ′) with
l, l ′ ≤ 1.

Although other singly excited states should be included, this procedure could pro-
vide an initial indication about the contribution from excited states relative to the
ground state. The scattering integrals that appear in the calculation with wave func-
tions for excited state are of the type considered by Nordsieck [114]. The explicit
methods that bypass the cumbersome and implicit differentiation for calculating the
most general cases of these scalar and vectorial bound-free form factors, have been
developed by Belkić [115–120] in both parabolic and spherical coordinates.

Total cross sections in the CDW-4B method for double electron capture from He by
He2+ including several excited states have been reported in Ref. [113]. These results
are based upon the wave function of Löwdin [75] for helium in the entrance channel and
the CI wave function [112] for the final state in the exit channel. From the outset, capture
into excited states is not expected to play a significant role in process (9.2), because of
the dominance of the ground-to-ground state transition which is resonant. The explicit
computations from Ref. [113] confirm this expectation, such that the sum from all the
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Fig. 13 Total cross sections Q as a function of the incident energy E for process Li3+ + He(1s2) →
Li+(�)+He2+. Theory: singly-chained curve (CDW-IPM method [121] including the sum of the ground
and all excited final states), dashed curve (CDW-4B method [113] including the final ground state alone) and
full curve (CDW-4B method [113] including the sum of the ground and all excited final states). Experiment:
open square [99]

considered final bound states of helium is very close to the full curve in Fig. 10 from
the CDW-4B method for the ground-to-ground state transition alone considered by
Belkić [21]. This is evidenced directly in Fig. 12. Here, e.g. at the incident energies
1, 2 and 5 MeV the total cross sections from the ground-to-ground state transition
(and the sum of this latter contribution with the corresponding yield from the excited
states, written in the parentheses) are: 1.48× 10−20cm2 (1.97× 10−20cm2) , 1.89×
10−22cm2 (2.33 × 10−22cm2) and 3.25 × 10−25cm2 (3.60 × 10−25cm2), respec-
tively. Moreover, the cross sections due to doubly excited state are smaller than those
for singly excited ones, especially at high impact energies [113].

The CDW-4B method used in Ref. [113] has also been applied to double elec-
tron capture in the Li3+–He and B5+–He collisions. Here, it is anticipated that the
contributions from the excited states are important, as confirmed in Figs. 13 and 14.
This occurs because the ground-to-ground transitions for the Li3+–He and B5+–He
double charge exchange are non-resonant and, therefore, excited states could yield a
sizeable contribution. At smaller impact energies, the main contribution to the total
cross section originates from singly excited states, while the ground state (1s2) 1S
provides about 40% of the total cross section. In all the cases under consideration, the
difference between the cross sections for the ground state and singly excited states
diminishes with increased impact energy. It is clear that the ground state contribution
dominates at very high impact energies.

The cross sections for formation of doubly excited states are one order of magni-
tude smaller than the cross sections for singly excited states in the investigated energy
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Fig. 14 Total cross sections Q as a function of the incident energy E for process B5+ + He(1s2) →
B3+(�)+He2+. Theory: singly-chained curve (CDW-IPM method [121] including the sum of the ground
and all excited final states), dashed curve (CDW-4B method [113] including the final ground state alone) and
full curve (CDW-4B method [113] including the sum of the ground and all excited final states). Experiment:
open square [122]

range. Furthermore, for the Li3+–He and B5+–He collisions, the contributions from
the states (1s3s) 1S and (1s3p) 1 P become of the order of or even significantly larger
than the ones from the states (1s2s) 1S and (1s2p) 1 P in the investigated energy region
[113]. The results from the CDW-IPM [121] are also shown in Figs. 13 and 14. These
results correspond to double electron capture into all final states of the (ZP; e1, e2) f

system, and they are seen to overestimate the experimental data.
The main goal of this subsection is to assess the contribution of excited states from

the (ZP; e1, e2) f system in the exit channel of process (2.1). It is found that these latter
contributions can be important, provided that the studied transitions are non-resonant
when the target is in the ground state, as usual. Moreover, the inclusion of excited
states into the computation can noticeably improve agreement between the CDW-4B
method and experimental data, as in the case of the Li3+–He and B5+–He collisions
[121] (although in the former case the results from the CDW-4B method still lie con-
siderably below the measured data, as seen in Fig. 13). However, this is definitely not
the case for the He2+–He collision [121], since the ground-to-ground state transition
in process (9.2) is dominant due to resonance. Note that for formation of H− in the
H+–He double charge exchange [7,76], there are no excited states in the exit channel.
Hence, it can be concluded that the CDW-4B1 method provides relatively reliable
predictions for double electron capture at intermediate and high impact energies for
the H+–He , Li3+–He and the B5+–He collisions, but not for the He2+–He collision,
for which an approximate version of the CDW-4B2 method yields good agreement
with experiments (see Fig. 10).

123



1454 J Math Chem (2010) 47:1420–1467

Fig. 15 Differential cross sections dQ/d� as a function of the scattering angle θ at the incident energy
E = 1.5 MeV for process (9.2). Theory (no convolution): dashed curve (CB1-4B method without pertur-
bation Oi [22,69,70]) and full curve (CB1-4B method with perturbation Oi [22,70]). Experiment: open
diamond [85]

It should be noted that the CDW-4B method can also be used with multi-parameter
highly correlated wave functions, such as those from Refs. [123–126] that include a
number of the CI terms ranging from 12 to 108. These latter orbitals are capable of
including most of the radial and angular correlations, despite the fact that such func-
tions do not explicitly contain the inter-electronic coordinate r12. The wave functions
from Refs. [125] and [126] have been extensively used by Belkić [127,128] for single
electron detachment from H−(1s2) by impact of H+ studied by using the MCB-4B
method.

In order to illustrate the validity of the presented distorted wave approximations,
angular distributions dQ/d� should also be reviewed. To this end, we analyze the dif-
ferential cross sections for double electron capture in collisions between the He2+ ions
and He atoms for reaction (9.2) at E = 1.5 MeV. Recall that for this latter symmetric
and resonant process, there is no post–prior discrepancy. The results for dQ/d� from
the CB1-4B method with and without the initial state perturbation Oi given by (9.3)
are displayed on Fig. 15. These two sets of differential cross sections from the CB1-4B
method computed using the initial and final helium wave functions of Hylleraas [72]
are very close to each other.

As expected, this is in accordance with the similar situation already encountered
in Fig. 5 regarding the total cross sections for process (9.2) treated in the CB1-4B
method. Thus the corrective perturbation Oi can be ignored for both dQ/d� and Q. It
is seen in Fig. 15, that the CB1-4B method exhibits an unphysical and experimentally
unobserved dip at θlab � 0.112 mrad. This extremely sharp dip is due to a strong
cancellation of the opposite contributions coming from the repulsive (2ZT/R) and the
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Fig. 16 Differential cross sections dQ/d� as a function of the scattering angle θ at the incident energy
E = 1.5 MeV for process (9.2). Theory (no convolution): dotted curve (CB1-4B method [69,70]), dashed
curve (BCIS-4B method [5]) and full curve (BDW-4B method [21,22]). Experiment: open diamond [85]

attractive (−ZT/x1 − ZT/x2) potentials in (8.3). In a narrow cone near the forward
direction θlab � 0 mrad, the differential cross sections in the CB1-4B method mark-
edly overestimate the experimental findings. On the other hand, as seen in Fig. 15 the
CB1-4B method underestimates the experimental data at larger scattering angles.

The differential cross sections obtained using the BDW-4B method are shown in
Fig. 16, where a comparison is made with the BCIS-4B and CB1-4B methods, as
well as with the experimental data of Schuch et al. [85]. The CB1-4B, BDW-4B and
BCIS-4B methods exhibit the proper asymptotic behaviors at large inter-aggregate
separations in both the entrance and the exit channels. However, unlike the CB1-
4B method, the BDW-4B and BCIS-4B methods take full account of the Coulomb
continuum intermediate states of both electrons in one channel. Hence, by compar-
ing these two theories with the CB1-4B method, one could learn about the relative
importance of the intermediate electronic ionization continua. As seen in Fig. 16, the
BCIS-4B method provides a substantial improvement over the CB1-4B method. First,
in the BCIS-4B method, the dip in the angular distribution disappears, and near the
dip region the angular distribution exhibits only a minimum at θlab � 0.121 mrad,
followed by a neighboring broader maximum (the Thomas peak), despite the fact that
the same perturbation potential is used as in the CB1-4B method. The behavior of the
angular distribution obtained in the BDW-4B method is altogether quite similar to that
in the BCIS-4B method.

It should be recalled that the BDW-4B and BCIS-4B methods differ only in the per-
turbation potentials, such that the former contains the two gradient operators, whereas
the latter uses the scalar (Coulomb) potentials. As can be seen from Fig. 16, the overall
agreement of the BDW-4B and BCIS-4B methods with the experimental data can be
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considered as fairly good. Nevertheless, at larger scattering angles, despite the proper
inclusion of the Rutherford scattering, both the BDW-4B and BCIS-4B methods yield
differential cross sections that are considerably lower than the corresponding exper-
imental data [85]. Note that the measured findings relate to double electron capture
into all the states of He, whereas the considered theoretical methods include only the
ground-to-ground state transition (1s2 → 1s2).The main purpose of Fig. 16 is to dem-
onstrate the influence of electronic intermediate ionization continua to the differential
cross sections by direct comparisons among the results of the analyzed four-body
methods. None of the theoretical results displayed in Fig. 16 were folded with the
experimental resolution function. Further, using (9.6), Belkić et al. [22] also com-
puted differential cross sections by means of the CDW-IPM for reaction (9.2). Their
results in the CDW-IPM are in good agreement with the experimental data at small and
intermediate scattering angles (not shown in Fig. 16 to avoid clutter). At larger values
of θ, the CDW-IPM underestimates the measured data. Unlike the CDW-4B method
and the experiment, the CDW-IPM shows some undulations in angular distribution at
larger scattering angles [22].

At sufficiently high impact energies, it should be possible to predict three maximae
in the differential double capture cross sections. These maximae result from different
higher-order contributions as predicted by Belkić et al. [22]. Applying purely classical
arguments, one expects to find the customary Thomas double scattering peak at the
angle θ(1)lab = (1/MP) sin 60◦ = (1/MP)

√
3/2 ≈ 0.118 mrad = 0.0068◦. This peak

corresponds to two consecutive events: (i) one electron is captured through the direct
first-order mechanism, and (ii) the other electron is captured through the Thomas dou-
ble scattering. The next similar structure should occur at the angle θ(2)lab = 2θ(1)lab =
(2/MP) sin 60◦ = (1/MP)

√
3 ≈ 0.236mrad = 0.0136◦. In this case, when both elec-

trons are treated classically, they are supposed to be in the same place at the same
time to exhibit the cumulative Thomas double scattering. Each electron first scat-
ters elastically on the projectile through 60◦ towards its parent nucleus. Subsequent
scattering of each electron on the target nucleus is also elastic through the next 60◦.
The two electrons are then ejected from the target with the velocity of the projectile in
the incident beam direction. Then the attractive potential between ZP and 2e suffices
to bind these three particles together into the (ZP; 2e) f system. These two Thomas
peaks have also been analyzed in Ref. [101] within the IPM version of the CDW-EIS
method (as acronymed by CDW-EIS-IPM). Their theoretical results for differential
cross sections at 400 MeV clearly show the appearance of the structures at θ(1)lab and

θ
(2)
lab , associated with the mentioned intermediate double scattering processes.

The third peak can be expected at the angle θ(3)lab = (1/MP)
√

2 sin 45◦ = (1/MP) ≈
0.136 mrad = 0.0078◦ , which is situated between θ(1)lab and θ(2)lab . This time, one elec-
tron (say, e1) is first scattered on the projectile through 45◦ towards the other electron
e2, thus acquiring velocity v1 = v

√
2. Then, e1 collides with e2 elastically and finds

itself deflected through another 45◦ in the incident beam direction with the velocity
v′1 = v. The consequence of such an event on e2 is manifested in the recoil of this
second electron with speed v2 = v through 90◦ perpendicular to the incident direction.
In the final step, e2 scatters elastically on the target nucleus through another 90◦ with
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v′2 = v in the projectile direction. Then both electrons travel in the incident beam direc-
tion and are, therefore, captured by the projectile. This event producing the peak at
θ
(3)
lab represents a genuine third-order effect. The peak at θ(3)lab is a pure four-body effect

due to dynamic correlations. Since these latter correlations are absent from treatments
involving independent particles, the peak at θ(3)lab has not been obtained by Martínez
et al. [101] in the CDW-EIS-IPM. In order to adequately describe these higher-order
phenomena, it would probably be the most appropriate to use the CB2-4B and CB3-4B
methods. In the case of the CB3-4B method, one would encounter multi-dimensional
numerical quadratures that could be optimally computed by the Monte Carlo algorithm
VEGAS [129–131], as has been shown by Belkić [1,13,95,96].

New experimental data are required at higher impact energies to provide a check of
these theoretically predicted peaks in the angular distributions. In addition to the exper-
imental results at 1.5 MeV that represent the first measurement of differential cross
sections for double electron capture in the He2+–He collisions, there are also state-
selective differential cross sections for the same process at energies 0.25–0.75 MeV
[132,133] obtained by using a powerful and versatile atomic microscope type tech-
nique known as cold target recoil ion momentum spectroscopy (COLTRIMS). The
same COLTRIMS technique has also been used more recently to measure differen-
tial cross sections at impact energies ranging from 0.75 to 1.5 MeV/amu [134]. The
COLTRIMS technique offers a unique, albeit indirect, but nevertheless extremely pre-
cise way to determine the final state of the projectile, including its scattering angles.
Instead of energy losses and scattering angles of the projectile itself, COLTRIMS
simultaneously determines the longitudinal and transverse momenta of the recoil ion
(He2+ in the discussed case). Since there are only two particles in the final state, the
momentum change of the projectile must be compensated exactly by the momentum
change of the recoil ion, as per the total momentum conservation law. Thus analyzing
the longitudinal momentum (in the beam direction) of the recoil ion is equivalent to
the customary translational spectroscopy of the projectile. Moreover, the determina-
tion of the recoil ion transverse momentum is equivalent to measuring the scattering
angle of the projectile. Although the achieved scattering angle resolution is better than
±10−2 mrad [132,133], no structure from the Thomas type mechanisms has been
found in these experiments. This indicates that higher impact energies than those con-
sidered by Dörner et al. [132,133] seem to be necessary to detect these Thomas peaks
unambiguously in the measurements.

10 Discussion and conclusions

This work gives a thorough and systematic evaluation of the current status and a criti-
cal assessment of the leading quantum-mechanical four-body distorted wave methods
for double charge exchange in high-energy collisions of multiply charged ions with
heliumlike targets. Particular emphasis is placed upon the importance of preserving
the proper Coulomb boundary conditions that are of high relevance to both the formal
establishment of theory and comparisons with measurements. In practice, it is rela-
tively easy to satisfy the correct Coulomb boundary conditions for the initial and final
total scattering wave functions in the entrance and exit channels. To this end, in addi-
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tion to the long-range Coulomb distortions of the plane waves for relative motion of
two charged heavy aggregates, account should be made for the intermediate ionization
continua of the electrons in the entrance and exit channels for the CDW-4B method, or
in either the entrance or exit channel for hybrid distorted wave treatments, such as the
boundary-corrected continuum intermediate state (BCIS-4B) and Born distorted wave
(BDW-4B) methods. Regarding the boundary-corrected first Born (CB1-4B) method,
the pure electronic continuum intermediate states are not directly taken into account.
Rather, the presence of the electrons is felt here through a screening of the two nuclear
charges in the Coulomb wave functions of the relative motion of the heavy scattering
aggregates.

Double electron capture from helium by fast heavy nuclei is studied by means of
the CB1-4B, CDW-4B, BDW-4B, BCIS-4B and CDW-EIS-4B methods. It is found
that unlike the well-documented success of the CB1-3B method for single-electron
capture at intermediate and a wide range of high energies (all the way up to the outset
of the Thomas double scattering), the CB1-4B method, as the prototype of four-body
first-order theories, is satisfactory for double electron capture only at some interme-
diate energies, but dramatically fails at higher energies. By contrast, as the prototype
of four-body second-order theories, the CDW-4B method is successful for the major-
ity of double electron capture processes, thus continuing with the excellent tradition
of the corresponding three-body counterpart, which is the CDW-3B method. This is
particularly true for two-electron capture from He by H+ for which it is sufficient to
include only the ground-to-ground state transition, due to the absence of the excited
states of the H− ion formed in the exit channel. For the same H+–He double charge
exchange, the cross sections from the CB1-4B method markedly overestimate all the
experimental data by 1–3 orders of magnitude at all energies (10–1000 keV). More-
over, using the CDW-4B method for double electron capture in the ZP–He collisions
with ZP ≥ 3, it is found that the contribution from excited states can be important
compared to that from the corresponding ground states. As such, including excited
states into computations can improve the agreement between the CDW-4B method
and experimental data.

From the terminological viewpoint within the distorted wave formalism, it is cus-
tomary to refer to the first/second-order methods as those theories that exclude/include
the electronic continuum intermediate states, respectively. On the other hand, any such
second-order distorted wave method, may simultaneously be the lowest-order term in
a consistent perturbation series expansion of the full transition amplitude. Then by
a parallel nomenclature, this lowest-order term of a perturbation development (with
or without distorted wave formalism) would be called a first-order approximation
to the full transition amplitude. Thus, for example, the CDW-4B method is a sec-
ond-order method (when viewed from the distorted wave perspective), as it includes
the electronic continuum intermediate states. However, the same CDW-4B method is
simultaneously the rigorous first-order term in the Dodd–Greider perturbation series.
As such, the CDW-4B method is also the first-order approximation to the exact Dodd–
Greider expansion. This latter fact should explicitly be indicated (whenever there is
a chance for confusion) with a more specific acronym such as CDW-4B1. This is
especially helpful whenever a reference should be made to the second term in the
Dodd–Greider expansion, in which case the acronym CDW-4B2 is definitely needed.
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As to double electron capture in the He2+–He(1s2) collisions, excited states are
expected to play a minor role due to the dominance of the resonant 1s2–1s2 transition.
The CDW-4B method confirms this anticipation, but does not quantitatively repro-
duce a part of the available experimental data at impact energies 200–3000 keV that
are within the domain of the validity of this theory for the He2+–He(1s2) collisions.
Interestingly, for this symmetric scattering, the CB1-4B method substantially outper-
forms the CDW-4B method at energies 200–1500 keV. Such a surprising situation
might seem to have been ameliorated in the past by using a crude approximation to the
Green function from the second-order propagator of a perturbation expansion which,
however, is not of the Dodd–Greider type. It is well-known that this latter circumstance
could lead to certain serious difficulties.

All ordinary distorted wave perturbation expansions (non-Dodd–Greider), similar
to the undistorted Born series, contain disconnected or dangerous diagrams that cause
the transition operator to diverge for rearranging collisions. A seemingly improved
agreement of the ‘augmented’ CDW-4B method for the two-electron transfer in the
He2+–He(1s2) collisions should therefore be taken with considerable caution, since
the approximate Green function is merely off-shell. Moreover, only two hydrogen-like
ground states centered on the projectile and target nucleus were taken into account
from the sum over the discrete and continuous parts of the whole spectrum. More
systematic work is needed for this particular colliding system, first by treating the on-
and off-shell contributions on the same footing, and second by assessing the conver-
gence rate in the spectral representation of the Green function from the second-order
term of a chosen perturbation series. Needless to say, it would be important to use the
second term in the Dodd–Greider perturbation series to obtain a relatively reasonable
estimate of the proper CDW-4B2 method for double charge exchange. Comparing
such an estimate to the contribution from the associated CDW-4B1 method would
give an invaluable indication about convergence of the Dodd–Greider perturbation
series which does not contain any disconnected diagrams.

As to the BCIS-4B and BDW-4B methods, they have been applied to double elec-
tron capture in the He2+–He collisions. At moderately high energies (1–3 MeV), good
agreement with experiments is found using the BCIS-4B and BDW-4B methods. How-
ever, at still higher energies (4 and 6 MeV), the cross sections from the BCIS-4B and
BDW-4B methods overestimate the experimental findings (that are the only two mea-
sured data points above 3 MeV). Below 1 MeV all the way up to 100 keV, the BCIS-4B
and BDW-4B methods underestimate the available experimental data by a factor rang-
ing from 2 to 10. Otherwise, throughout the range 100–7000 keV, the BCIS-4B and
BDW-4B methods agree closely with each other. They both exhibit a broad Mas-
sey maximum near 175 keV. Such a behavior is opposed to the CDW-4B method
which gives the cross sections that continue to rise with decreasing impact energy, as
usual, without any sign of the resonance peak. This latter pattern occurs because of an
enhanced contribution from the discrete-continuum coupling, which is mediated by
the typical ∇ ·∇ potential operator (for each of the two electrons) in the perturbation
interaction from the transition amplitude of the CDW-4B method. Here, we have an
example of discrete-continuum interference, because one gradient in the perturbation
acts on e.g. the initial bound state centered on the target nucleus, whereas the other
gradient is applied to the electronic full Coulomb wave centered on the projectile.
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The gradient–gradient perturbation describes the same electron being simultaneously
bound to the target nucleus, and unbound in the field of the projectile nucleus. There-
fore, this coupling of discrete and continuum states via ∇ · ∇ is a typical two-center
effect. Once the underlining scalar product is carried out, at least two complex-valued
terms are obtained in the transition amplitude T−i f . The ensuing terms can have con-

structive or destructive interference in |T−i f |2, depending on the value of the impact
energy. Specifically, when the impact energy decreases, constructive interference pre-
vails between the two mentioned parts in |T−i f |2 and this causes the cross sections to
increase in the CDW-4B method. Also, the Coulomb normalization constant for the
full electronic continuum intermediate states increases with decreasing energy. These
features are common to both the CDW-3B and CDW-4B methods. However, in the
CDW-4B method, this constructive interference is further enhanced, since there are
two gradient–gradient operators for each of the two actively participating electrons.

The CDW-EIS-4B method, as another hybrid method, was also applied to double
capture from helium by alpha particles at impact energies ranging from 0.1 to 6 MeV.
This method combines the CDW-4B method for the exit channel with the symmetric
eikonal (SE-4B) method in the entrance channel. Unexpectedly, at energies 0.1–3 MeV,
the CDW-EIS-4B method fails much more severely than the CDW-4B method for the
same collision. Specifically, at energies 0.1–3 MeV the cross sections from the CDW-
EIS-4B method underestimate all the experimental data by a factor ranging from 10
to 1000. Only at the two highest energies (4 and 6 MeV), the curve from the CDW-
EIS-4B method passes through the estimated error bar limits of the measured cross
sections. This breakdown of the CDW-EIS-4B method at energies 0.1–3 MeV is very
surprising, especially given the success of the corresponding CDW-EIS-3B method
for single electron capture at a wide range of intermediate and high energies. As an
attempt to rescue this unsatisfactory situation, the ‘augmented’ CDW-EIS-4B method
has been used in the past by including approximately a second-order term in a non-
Dodd–Greider perturbation expansion, in precisely the same manner as done in the
discussed ‘augmented’ CDW-4B method. However, this has not met with success at
all and, therefore, further studies are needed to clarify the hidden drawbacks of the
CDW-EIS-4B method for double electron capture. Such studies are needed in view
of the similar inadequacy of the CDW-EIS-4B method for double electron capture in
the Li3+–He collisions. Crucially, no similar inadequacies are present in the BDW-4B
and BCIS-4B methods.

Further, we conclude that for double charge exchange, the presented four-body
methods are weakly dependent upon the choice of bound state wave functions. By
implication, static correlations of two electrons bound to the target do not play a
significant role in double electron capture.

The present work is also concerned with analyzing the role of continuum interme-
diate states of the electrons in the field of nuclei in the entrance and exit channels. The
net effect of these latter states is observed to be striking, as illustrated in the case of
symmetric resonant double-charge transfer in the He2+–He collisions at high ener-
gies. For example, during comparisons of theory with measurements at high energies,
it was found that the BCIS-4B method markedly improves (by 2 orders of magni-
tude) the predictions of the CB1-4B method. This startling effect occurs because the
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BCIS-4B method describes the motion of two electrons in the field of the projectile
by two full Coulomb waves that are in the CB1-4B method approximated by their
asymptotes (logarithmic phases) in terms of the variable R,which is vector of the dis-
tance R between the two heavy scattering aggregates. Hence, a comparative analysis
of the BCIS-4B and CB1-4B methods reveals the critical importance of the electronic
continuum intermediate states for double charge exchange. While the CB1-3B and
BCIS-3B methods for single electron transfer collisions give cross sections that are
similar at all energies prior to the outset of the Thomas region, the corresponding
CB1-4B and BCIS-4B methods depart from each other progressively more severely
with increasing impact energies. This indicates that continuum intermediate states are
much more important for four- than for three-body fast collisions.

Yet another instructive insight could be gained by examining the sensitivity of con-
tinuum intermediates states to the explicit form of the distortion of the wave function
within e.g., the initial scattering state. The first invaluable hint is provided already by
the discussed comparison between the CDW-4B and CDW-EIS-4B methods. Recall
that the latter is a further approximation of the former. The additional approximation
is in the replacement of the two electronic full Coulomb waves in the entrance chan-
nel by their logarithmic phase factors that are valid at asymptotically large distances.
Everything else remains the same in the T -matrix elements from the CDW-4B and
CDW-EIS-4B methods. An analogous replacement in the CDW-EIS-3B method gives
total cross sections that typically bend down towards the experimental data as opposed
to departing from them, as is the case with the CDW-3B method. The resulting agree-
ment with experiments created enthusiasm about the CDW-EIS-3B method, although
no rationale for the success has ever been reported. It is indeed counter-intuitive that
an approximation to a given method works better than the exact version of that method
itself (CDW-EIS-3B versus CDW-3B in the case under discussion). This remark can-
not be countered by the argument that the CDW-EIS-3B method is derivable with no
reference to the CDW-3B method. Namely, irrespective of the derivation, the final
expression for the post transition amplitude in the CDW-EIS-3B method is imme-
diately identified as the eikonal approximation of the corresponding exact CDW-3B
method in which the full Coulomb wave in the entrance channel is replaced by its
logarithmic phase asymptote.

An important question to ask here is: does the improvement of the CDW-EIS-3B
over CDW-3B method occur at the energies within the assessed validity domain of
high-energy methods? Both the CDW-3B and CDW-EIS-3B methods are high-energy
approximations as the lowest (first) orders in the Dodd–Greider perturbation expan-
sion of the complete transition amplitude. This implies that they should be valid at
impact velocities v exceeding (typically by several times) the classical orbital velocity
v0 of the electrons from the target state from which double capture takes place. At
these latter impact velocities (v � v0) from the domain of the joint validity, excel-
lent agreement exists between the CDW-3B and CDW-EIS-3B methods that, in turn,
compare favorably with measurements. However, improvement of the CDW-EIS-3B
method over the CDW-3B method occurs outside the expected validity domain of
both methods, i.e., at those values of v that are close and smaller than v0. As such, the
answer to the raised question is in the negative. In other words, the improvement of
the CDW-EIS-3B over CDW-3B method comes at energies at which it is not theoret-
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ically expected from the applicability criterion for the lowest-orders of perturbation
series expansions. Technically, the reduction of large cross sections from the CDW-3B
method in the region below its domain of applicability is achieved by simplifying this
theory via eikonalization which yields the CDW-EIS-3B method. The eikonalization
succeeds in weakening the intensity of bound-continuum coupling. This is possible by
an admixture of destructive interference caused by approximating the full Coulomb
wave by its asymptotic phase in the entrance channel. Such an outcome is plausible,
since interference in |Ti f |2 is very sensitive to any change of phases in all the complex-
valued constituents of the T -matrix element. Consequently, constructive interference
from the CDW-3B method at lower energies can be mitigated or even converted into
destructive interference when Coulomb waves are replaced by their asymptotes. And
this is what happens in the CDW-EIS-3B method. Added to this destructive interfer-
ence is the absence of the normalization constant in the Coulomb wave function in
the eikonal initial state from the CDW-EIS-3B method. This Coulomb normalization
increases with decreasing incident velocity.

In order not to view this switching (from constructive to destructive interference) as
fortuitous and limited only to one active electron, it would be necessary that a similar
phenomenon also occurs within eikonalization of electronic full Coulomb waves for
two or more active electrons. This is indeed the case with the CDW-EIS-4B method for
two-electron capture. The only problem is that this time the benefit of the CDW-EIS-
3B method from destructive interference is not repeated at all by the CDW-EIS-4B
method. Quite the contrary, the replacement of two electronic full Coulomb waves
by the corresponding double phase factor in the entrance channel yields a markedly
exaggerated destructive interference. Astoundingly, the CDW-EIS-4B method gives
cross sections that grossly underestimate experimental data as well as the results from
CDW-4B method by 1–3 orders of magnitude at the energies from the expected the-
oretical domain of validity (0.1–3 MeV). This effectively pushes the lower limit of
the applicability domain of the CDW-EIS-4B method to quite high energies (E ≥ 4
MeV). On the other hand, the CDW-EIS-4B method is not adequate at energies where
the Thomas double scattering becomes important, because the eikonalization of Cou-
lomb waves destroys the proper velocity dependence for spherically non-symmetric
states. As such, the domain of applicability of the CDW-EIS-4B method is restricted
to a very narrow interval indeed (nearly void of experimental data) which is embedded
in the high energy region. In practice, this excludes the CDW-EIS-4B method from
the list of useful approximations for double electron capture.

Hence, there are no systematics in improving the CDW by the CDW-EIS model
when passing from single- to double-electron capture. Rather, quite the contrary hap-
pens. This indicates that the CDW-EIS method works for single capture by serendipity,
but fails as soon as the physics and testings become more stringent, which is the case
for double capture. This was bound to happen, since the CDW-EIS method is merely
an eikonal approximation to the CDW method, as stated. Therefore, rather than resort-
ing to comparisons with experiments, the genuine quality of this eikonalization must
first and foremost be judged by the departure of the CDW-EIS from the CDW method
within their joint domain of validity as high-energy theories. Experiments on single
capture happened to favor the CDW-EIS over the CDW method at energies where
neither method was expected to be adequate. However, if the course of the events had
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been otherwise in the past, with testings of the CDW-EIS method against the experi-
ment being performed first on double capture, this eikonal model would be considered
as utterly inadequate. At present, regarding capture processes alone, all we can say is
that the CDW-EIS method is limited exclusively to single capture. Multiple capture is
expected to be even more devastating for the CDW-EIS method than double capture,
since probably with every additional electron becoming active, another higher order in
the corresponding perturbation expansion would be necessary for a barely qualitative
description, but on the expense of rendering the computations prohibitively impracti-
cal. This is an extrapolation of the current experience with a second-order CDW-EIS
method which can hardly follow the shape of the line drawn through experimental
data on double capture let alone quantitatively reproduce the measured cross sections.
Whether these severe drawbacks and limitations also extend to double and multiple
ionization remains to be seen. Thus far, the CDW-4B and CDW-EIS-4B methods have
not been applied to double ionization in collisions of nuclei with helium-like atomic
systems. Both the CDW-3B and CDW-EIS-3B methods are excellent for single ion-
ization of hydrogen-like and multi-electron atomic targets by fast nuclei. For highly
charged projectiles, it has been demonstrated in the literature that the CDW-3B method
outperforms the CDW-EIS-3B approximation.

Also illustrative is to juxtapose the BDW-4B and CDW-EIS-4B methods. This
is interesting because the BDW-4B method differs from the CDW-EIS-4B method
only in the inter-particle variables from the Coulomb logarithmic phase factors in the
entrance channel. This variable is the inter-aggregate separation R in the BDW-4B
method. In the CDW-EIS-4B method, a pair of two different variables (s1 and s2)

appears as the distances of the two electrons from the projectile nucleus. This leads
to two Coulomb logarithmic phase factors for the motion of two electrons in the field
of the projectile nucleus. As stated, two such phases are the asymptotic forms of the
corresponding full Coulomb wave functions for the electrons in the projectile-nucleus
field. In the asymptotic region with large distances among all the particles, the product
of the two electronic Coulomb phases in the CDW-EIS-4B method coincides with the
corresponding logarithmic factor from the BDW-4B method. Such a high degree of
similarity between these two methods also exists in the corresponding versions for
one-electron transitions, such that the CDW-EIS-3B and BDW-3B methods give cross
sections that are quite close to each other. However, this is not the case any longer for
double capture, since the CDW-EIS-4B method underestimates the BDW-4B method
by 1–2 orders of magnitude at all energies (0.1–6 MeV).

One wonders why the passage from the CDW-EIS-3B to CDW-EIS-4B method is
so troublesome, as opposed to the extension of the BDW-3B to BDW-4B method?
The answer is that the BDW-4B and CDW-EIS-4B methods have very different phase
interference patterns away from large inter-particle separations. In the CDW-EIS-4B
method, the Coulomb logarithmic phases for the eikonal initial state are always of a
purely electronic origin (at all distances, finite and infinite), as is the discrete-contin-
uum coupling via ∇ ·∇ in the perturbation potential, which causes the transition in the
T -matrix element. For each of the two electrons, this latter two-center coupling is such
that one of the gradient operators in the scalar product ∇ · ∇ acts on the final bound
state in the field of the projectile nucleus, whereas the other applies to the electronic
full Coulomb wave function centered on the target nucleus. As discussed, at finite
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distances the two electronic phase factors in the entrance channel introduce a strong
destructive interference into the discrete-continuum coupling, thus yielding an enor-
mous reduction of the ensuing cross sections in the CDW-EIS-4B versus CDW-4B
method. This is one of the origins of the worsened agreement of the CDW-EIS-4B
method with experiments. The other origin is the absence of the normalization con-
stants of the two Coulomb wave functions, as a consequence of their eikonalization.
In contradistinction, the Coulomb phases in the BDW-4B method are in terms of the
inter-aggregate distance R. As such, they do not interfere significantly (at finite sepa-
rations) with the electronic discrete-continuum coupling mediated by the same ∇ ·∇
potential operator which is common to both the BDW-4B and CDW-EIS-4B meth-
ods. More precisely, unlike the electronic logarithmic factors from the CDW-EIS-4B
method, the scattering integrals involving the R-dependent phases from Ti f in the
BDW-4B method are reduced to a folding- or convolution-type integral. As a result,
even if destructive interference effects from the R-dependent eikonal phases are pres-
ent, they are effectively damped by this additional integration (folding). Recall that,
by definition, every integral acts as a smoothing operator, which de facto averages
over sharp phase-sensitive oscillations/undulations of the integrand. Additionally, the
discrepancy between the total cross sections from the CDW-EIS-4B and BDW-4B
methods increases with decreasing impact energy, attaining the largest values in the
region of the Massey resonance peak. This is another independent confirmation of the
critical relevance of phase interference effects that are radically different in these two
methods. It should be recalled that the prominent role in any resonance phenomena is
played by phases of functions whose interference can greatly influence the heights of
resonant peaks. To recapitulate, as far as one is dealing with the continuum interme-
diate states, the common conclusion which emerges from the comparative analysis of
the CDW-4B, BDW-4B and CDW-EIS-4B method is that the replacement of the full
purely electronic Coulomb waves by their eikonal phases in the CDW-EIS-4B method
is entirely unjustified.

We can conclude that at least some of the presently analyzed quantum mechanical
boundary-corrected four-body methods are able to provide adequate results for single
as well as double electron transitions at intermediate and high energies. Interest in
these methods remains steady, and further progress is expected in their extensions
to pure five-body scattering problems without resorting to the customary frozen-core
approximation, in order to adequately describe the existing coincidence experiments
with three active electrons.
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2. Dž. Belkić, Quantum theory of high-energy ion-atom collisions (Taylor and Francis, London, 2008)
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63. Dž. Belkić, S. Saini, H.S. Taylor, Phys. Rev. A 36, 1601–1617 (1987)
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